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Abstract  11 

Exploring crop spatial organizations within landscapes is a promising solution for agroecolog-12 

ical transitions and climate change adaptation in Mediterranean rainfed hilly agrosystems. A 13 

prerequisite is to ensure that crop models can simulate a range of agrohydrological processes 14 

in such agrosystems. The current study deepened the evaluation of the AquaCrop model by 15 

conducting a multicriteria evaluation (canopy cover CC, dry aboveground biomass AGB, ac-16 

tual evapotranspiration ETa, runoff R, soil water content SWC) for a range of crop and soil 17 

combinations, and for contrasted hydroclimatic years in northeastern Tunisia. The data were 18 

collected in the Kamech catchment (OMERE Observatory) during nine measurement cam-19 

paigns on predominant soils and crops. AquaCrop simulations were based on field observations 20 

and parameters from the literature. 21 
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AquaCrop could simulate plant dynamics and water fluxes for contrasted hydroclimatic years, 22 

with a slight dependence on soil class and a significant dependence on crop type. Model simu-23 

lations were of moderate quality for CC (R2 of 0.45, RMSE of 0.24 on average) and of accepta-24 

ble quality for AGB (R2 of 0.81, RMSE of 0.85 ton ha-1 on average). AquaCrop acceptably 25 

simulated water transfer across the soil–plant continuum (R2 of 0.62, RMSE of 0.77 mm day-1 26 

on average for ETa; R2 of 0.68, RMSE of 0.75 mm day-1 on average for R; R2 of 0.86, RMSE 27 

of 27.4 mm on average for SWC). The model performances were satisfactory for most cases, 28 

with p values larger than 5% for the Student’s t test on linear regressions of validation. Our 29 

results were similar to those reported in previous studies over flat terrain, including delayed 30 

senescence by model simulations with subsequent overestimation of CC and AGB observa-31 

tions. Additionally, soil cracks likely altered the AquaCrop ability to simulate runoff. Despite 32 

these limitations, our results support the application of AquaCrop to evaluate water productiv-33 

ity in hilly agrosystems. 34 

Keywords 35 

AquaCrop model; Rainfed agrosystems; Hilly terrains; Multicriteria evaluation; Mediterranean 36 

soils and crops; Soil water balance  37 
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1. Introduction 38 

Mediterranean agriculture is an important sector from economic, social and environmental per-39 

spectives, especially for the southern and eastern Mediterranean countries. It is a significant 40 

contributor to gross domestic product (GDP) in these countries; it ensures food security, and it 41 

helps reduce rural migration by providing local jobs (Tanyeri-Abur, 2015). Rainfed agriculture 42 

covers 80% and 75% of cultivated lands in the world and North Africa, respectively 43 

(Bhattacharya, 2019; Wani et al., 2009). It is generally based on family systems, and it has 44 

significant room for improvement in water productivity (Ruben and Pender, 2004). In hilly 45 

areas, the productivity of rainfed agriculture depends not only on the rainfall regime but also 46 

on the spatiotemporal distribution of surface water and sediment flows (Norouzi et al., 2010). 47 

Until now, Mediterranean public policies within hilly areas have mainly focused on mobilizing 48 

blue water resources for irrigated agriculture through the planning of hydroagricultural infra-49 

structures (e.g., dams, reservoirs) and have focused less on optimizing the use of green water 50 

for rainfed agriculture (Nouri et al., 2020). 51 

Despite of numerous benefits for Mediterranean hilly areas, rainfed agriculture undergoes sev-52 

eral pressures (Brun et al., 2016), either climate-driven (floods and erosion, heat waves, rainfall 53 

shortages) or anthropogenic-driven (population growth, increasing agricultural activities and 54 

hydroagricultural infrastructures). From a sustainability perspective, it is important to quanti-55 

tatively manage agricultural water, where some of the numerous solutions to be explored in-56 

volve the spatiotemporal modulation of anthropogenic actions, individually or in combination 57 

(IAASTD, 2008). These solutions imply processes (fluxes, storages and transformations) and 58 

several components (e.g., root zone, aquifer, vegetation, hydroagricultural infrastructures, ag-59 

ricultural practices) within agrosystems. The exploration of these solutions must account for 60 

two key points. First, in situ scientific experiments are not suitable for both large agricultural 61 

areas and forecasts in a climate change context, which makes necessary the use of process 62 
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modelling for numerical simulations (Jones et al., 2017). Second, the water cycle and crop 63 

dynamics are strongly linked. Vegetation cover drives the rainfall repartition between runoff 64 

and infiltration in relation to fluxes within hydrographic networks towards lakes and reservoirs, 65 

to soil water storage and to aquifer refill. The water cycle drives root zone water content and 66 

crop water consumption, with consequences on agricultural yields. It is therefore important to 67 

properly characterize the interactions between the water cycle and crop functioning within ag-68 

rosystems (Kanda et al., 2018). 69 

Integrated process modelling should be able to simulate, within hilly catchments, crop func-70 

tioning and the water cycle along with their interactions. This requires parsimonious crop mod-71 

els that (1) minimize the number of parameters for realistic simulations with spatialization pur-72 

poses and (2) simulate crop functioning in relation to water dynamics within the root zone layer 73 

and underlying shallow aquifer. The literature provides a large number of crop models that 74 

describe plant functioning and growth along with crop yield (Weiss et al., 2020). Well known 75 

examples are APSIM (Keating et al., 2003), DSSAT (Jones et al., 2003), EPIC (Williams et 76 

al., 1984), STICS (Brisson et al., 2003), WOFOST (Todorovic et al., 2009; de Wit et al., 2019), 77 

AquaCrop (Raes et al., 2009; Steduto et al., 2009), CropSyst (Stöckle et al., 2003), or AqYield 78 

(Constantin et al., 2015; Tribouillois et al., 2018). Based on the primary factors that describe 79 

crop functioning, Todorovic et al. (2009) classified crop models into (1) carbon-driven models 80 

such as WOFOST, CROPGRO, and DSSAT, (2) solar radiation-driven models such as 81 

CERES, EPIC, STICS, and APSIM, and (3) water-driven models such as AquaCrop and 82 

CropSyst in which biomass production is proportional to the amount of transpired water. 83 

CropSyst is a model based on water and solar radiation. When the vapour pressure deficit 84 

(VPD) is very low, the transpiration-biomass relationship is replaced by a radiative approach 85 

in which biomass is determined on the basis of intercepted photosynthetically active radiation 86 
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(IPAR, Stöckle et al., 2003; Kanda et al., 2018). Among the aforementioned crop models, Aq-87 

uaCrop is therefore the unique water-driven model (Kanda et al., 2018). It is thus an interesting 88 

model for addressing the coupling of crop functioning and the water cycle within Mediterra-89 

nean hilly catchments typified by rainfed agriculture. In addition, it provides a trade-off be-90 

tween robustness and simplicity, since it requires a moderate number of input parameters. 91 

The literature includes numerous studies that involve AquaCrop. These studies can be classi-92 

fied into four main groups, according to their content: (1) calibration, validation, and perfor-93 

mance evaluation of the model in specific contexts (Mkhabela and Bullock, 2012; Zeleke, 94 

2019); (2) cropping system management on the basis of model simulations: estimation of crop 95 

water requirements, sowing dates and crop yields, as well as consequences of fertilization, sa-96 

linity, and irrigation regimes on crop yield (Araya et al., 2010; Qin et al., 2013; Nyakudya and 97 

Stroosnijder, 2014; El Mokh et al., 2017; Er-Raki et al., 2021); (3) impact of climate change 98 

on crop production and evaluation of different adaptation strategies (Muluneh, 2020; Raoufi 99 

and Soufizadeh, 2020; Rashid et al., 2019); and (4) economic impact of cropping practices and 100 

climate change on productivity (Cusicanqui et al., 2013; Bird et al., 2016). Meanwhile, Aqua-101 

Crop has been used across the five continents, under different climates (Mediterranean, tropi-102 

cal, continental, temperate) and within both irrigated and rainfed agrosystems (Geerts et al., 103 

2009; García-Vila and Fereres, 2012; García-López et al., 2014; Vanuytrecht et al., 2014; Ah-104 

madi et al., 2015; Deb et al., 2015; Shrestha et al., 2016; Silvestro et al., 2017; Xing et al., 105 

2017; Sandhu and Irmak, 2019; Lu et al., 2021). Overall, AquaCrop has been tested and vali-106 

dated on a wide range of agroenvironmental conditions. 107 

Some of the aforementioned AquaCrop-based studies focused on variables describing crop 108 

growth, such as canopy cover CC, dry aboveground biomass AGB and yield (Todorovic et al., 109 

2009; Mkhabela and Bullock, 2012; Silvestro et al., 2017). Other studies addressed actual evap-110 

otranspiration ( ETa) (Geerts et al., 2009; Katerji et al., 2013) as well as soil water content 111 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6/52 

(SWC) (Nyakudya and Stroosnijder, 2014; Sghaier et al., 2014). Similar to most crop models, 112 

AquaCrop was designed and evaluated for local applications at the plot level over flat terrains. 113 

More recently, the model was evaluated on hilly terrains, either in a multilocal way that disre-114 

garded interplot water exchanges (Alaya et al., 2019; Han et al., 2019) or in a distributed way 115 

that accounted for interplot water exchanges (Van Loo and Verstraeten, 2021). However, more 116 

research is needed to address the diversity of situations induced by Mediterranean rainfed hilly 117 

agrosystems in relation to cropping, soil and topographic conditions. In addition, AquaCrop 118 

was evaluated on only a few variables simultaneously, whereas any multicriteria evaluation is 119 

likely to provide a better assessment of model capacities. 120 

The objective of this study is to deepen the evaluation of the capabilities of the AquaCrop 121 

model for rainfed crops within hilly Mediterranean catchments. We propose (1) to consider 122 

little-studied crops (e.g., faba bean and oats) under subhumid to semiarid climates, (2) to con-123 

sider combinations of crops (faba bean, oats, wheat, barley) and soils (Vertisols, Cambisols 124 

and Luvisols) for contrasted hydroclimatic years, and (3) to conduct a more substantial mul-125 

ticriteria analysis that includes simultaneously vegetation canopy (CC, AGB), soil water con-126 

tent integrated over topsoil and root zones, and water fluxes (ETa, runoff as infiltration excess). 127 

We focus here on the evaluation of AquaCrop without addressing calibration issues. The cur-128 

rent paper is structured as follows. We briefly present the AquaCrop model. We introduce the 129 

study area and the datasets used, as well as the strategy for evaluating the model. Thereafter, 130 

we analyse the comparison of the simulations against the observations by exploring the possible 131 

influences of soil and crop type. We finally discuss these results in light of former studies, and 132 

we conclude with our contribution to the assessment of AquaCrop performances, along with 133 

further perspectives.  134 
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2. Presentation of the AquaCrop model 135 

Detailed presentations of AquaCrop (https://www.fao.org/aquacrop/en/) are given by Steduto 136 

et al., (2009), Raes et al. (2009) and Salman et al. (2021). We detail here the specificities related 137 

to the methodological choices on which the current study relies. Developed by FAO, AquaCrop 138 

is a parsimonious (reduced number of parameters) crop model that aims to simulate crop bio-139 

mass and yield by considering water as the main driver of crop functioning (Kanda et al., 2018). 140 

Operating at a daily time step, AquaCrop simulates the vertical exchanges between the different 141 

components of the soil–plant-atmosphere continuum.  142 

AquaCrop describes the soil as a reservoir split into several horizons (5 maximum). Each hori-143 

zon is characterized by texture or related hydrodynamic properties: soil moisture at field ca-144 

pacity (HFC), soil moisture at wilting point (HWP), soil moisture at saturation (HSAT), satu-145 

rated hydraulic conductivity (KSAT) and drainage coefficient (τ). 146 

The model calculates soil evaporation (Es) and crop transpiration (Tr) separately, which per-147 

mits the quantification of the amount of water unused by vegetation (Steduto et al., 2009). 148 

Another feature of the model is the description of canopy growth by using canopy cover (CC) 149 

instead of leaf area index (LAI). The model calculates Tr as a function of CC, and biomass is 150 

determined as a function of both Tr and normalized water productivity (WP*). The yield is 151 

finally calculated by multiplying biomass by harvest index (HI). Water productivity (WP*) 152 

accounts for atmospheric concentration [CO2] and therefore permit to apply AquaCrop in pro-153 

spective climate contexts related to precipitation, air temperature, evaporative demand and 154 

[CO2]. 155 

The soil water content at each time step results from the balance of drainage, infiltration from 156 

rainfall/irrigation, soil evaporation and crop transpiration. AquaCrop accounts for four types 157 

of stress that affect crop growth: water stress, heat stress, fertilization stress and salinity stress. 158 
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Depending on the type of stress, the target parameters of the model change. For example, water 159 

stress affects leaf and CC expansion, root zone expansion, transpiration and the harvest index. 160 

The main variables simulated by the model relate to crop productivity (canopy cover, dry 161 

aboveground biomass and yield) and water balance (soil water content, runoff, infiltration, 162 

drainage, capillary rise, soil evaporation and vegetation transpiration). The model parameters 163 

are related to the crop (conservative parameters, fixed for a given species and nonconservative 164 

parameters, varying according to the varieties), the soil (horizon number, texture or hydrody-165 

namic parameters), and the groundwater table (depth). The forcing variables of the model are 166 

the climatic variables: reference evapotranspiration (ET0), air temperature, rainfall and mean 167 

annual [CO2]. Agricultural practices include sowing date, fertilization and irrigation. Finally, 168 

the initial conditions include the initial soil water and salinity content. 169 

3. Materials and methods 170 

3.1. Study site 171 

The study was conducted within the Kamech catchment, which is the southern site of the Med-172 

iterranean Observatory of Rural Environment and Water (French acronym OMERE, Molénat 173 

et al., 2018) that has collected multiple observations over the last 30 years. Kamech is a small 174 

hilly catchment area (2.6 km² size) located within the Cap-Bon Peninsula, northeastern Tunisia 175 

(10°52'-10°53'E and 36°52'-36°53' N, 108 m above sea level - asl.). It is representative of the 176 

climatic and cropping conditions of the region. The climate is Mediterranean subhumid/semi-177 

arid. The rainy season spans from October to March (Mekki, 2003) with a cumulative rainfall 178 

of 635 mm (annual average over the [1994-2020] period) and an annual reference evapotran-179 

spiration of 1366 mm (Molénat et al., 2018). The area is 70% agricultural, combining crops 180 

and livestock, with significant spatiotemporal variability in land cover and spatial heterogene-181 

ity in soil types (Mekki, 2003; Mekki et al., 2006).  182 
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The Kamech catchment is typified by a diversified land cover that encompasses rainfed and 183 

fodder crops (Mekki, 2003; Zitouna-Chebbi et al., 2018). The dominant crops are winter cereals 184 

(durum wheat, barley, oats and triticale) and legumes (chickpeas, faba bean and peas). Altitudes 185 

range from 80 m to 200 m, and terrain slopes vary between 0 and 30%. The geological substra-186 

tum is from the Miocene epoch, and it is mainly made of marl and clay (Mekki, 2003; Molénat 187 

et al., 2018). The four dominant soils are Cambisols, Luvisols, Vertisols and Regosols. They 188 

cover 46%, 26%, 10% and 18% of the catchment area, respectively (Mekki et al., 2018b). The 189 

soil depth varies from a few millimetres to 2 m. 190 

Kamech is also typified by a large occurrence of swelling clay soils with shrinkage cracks that 191 

occur from March to December (Mekki, 2003; Inoubli, 2016). The closing of cracks heavily 192 

depends on rainfall at the beginning of the wet season and completely ends after cumulative 193 

rainfalls of approximately 200 mm ± 50 mm (Mekki, 2003). At their maximum opening, they 194 

have a water storage capacity of approximately 70 mm. Runoff occurs from December to 195 

March, when cracks are closed (Mekki, 2003; Inoubli, 2016). 196 

3.2. Datasets 197 

The current study benefits from a large database collected over the last three decades in the 198 

framework of the OMERE Observatory. This database includes meteorological, pedological, 199 

hydrological and agronomic observations (Mekki et al., 2006, 2018; Zitouna-Chebbi et al., 200 

2018; Inoubli et al., 2017). This permitted to perform a thorough, multicriteria evaluation of 201 

the AquaCrop model. 202 

We chose wheat/barley, oats and faba bean as representative species of grain cereals, fodder 203 

cereals and legumes, respectively. For each of these crops, some datasets were available be-204 

tween 2001 and 2013. Each of these datasets included a range of observations collected 205 

throughout a crop cycle on a given plot from September to August that also corresponded to a 206 
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hydrological year. We selected the nine most complete datasets for conducting the AquaCrop 207 

multicriteria evaluation. This resulted in the combination of five years and eight plots. Table 1 208 

shows the available datasets, including the panel of data available in each of the nine datasets 209 

for the AquaCrop multicriteria evaluation. Fig. 1 shows the location of the plots within the 210 

Kamech catchment. In the panel of plots presented in Fig. 1, plot A differs from the others. 211 

Indeed, this plot has been dedicated for two decades to regular monitoring as part of the 212 

OMERE Observatory. This monitoring included meteorological forcing, surface and subsur-213 

face hydrological monitoring, vegetation monitoring and soil characterization. 214 

In the remainder of this section, we present the climatic, pedological, agronomic and hydrolog-215 

ical data, by distinguishing between (1) the data used as inputs to the AquaCrop model and 216 

(2) the data used for the multicriteria evaluation of the model simulations. 217 

  218 
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Table 1. The nine available datasets for the multicriteria evaluation of AquaCrop. LAI_plan, 219 

CC_visu, ETa, R and SWC stand for LAI from planimetric measurements, canopy cover from 220 

visual quantification, actual evapotranspiration, runoff and soil water content, respectively. 221 

The value Y of the label Year is related to harvesting year, and thus corresponds the crop cy-222 

cle that spreads from September of year Y-1 to August of year Y. 223 

Crop Dataset Available data 
 Year Plot LAI_plan CC_visu ETa R SWC AGB 
Wheat 2001 P7 x   x x x 
 2002 P9 x   x x x 
 2013 A x  x x x x 
Barley 2006 D x    x  
Oats 2002 P6 x   x x x 
 2005 B x  x  x x 
Faba 2001 P5  x  x x x 
 2001 P8  x  x x x 
 2002 P7  x  x x x 

 224 

Fig. 1. Map of the Kamech catchment with the location of the plots A, B, D, P5, P6, P7, P8 225 

and P9. The meteorological station is located near the outlet of the catchment area, down-226 

stream limit of the hilly lake.  227 

3.2.1. AquaCrop input data 228 
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3.2.1.1. Climatic data  229 

The climatic data were collected by the meteorological station located near the outlet of the 230 

catchment area (see Fig. 1). First, ET0 was calculated at the half-hourly time step by using the 231 

FAO-56 method along with measurements of solar radiation, air temperature, air humidity and 232 

wind speed. Next, estimates calculated at the half-hourly time step were integrated at the daily 233 

timescale. 234 

All rainfall data were collected at a daily time step. The rain gauge for each of the plots P5, P6, 235 

P7, P8 and P9 was located downstream of the plot. For plots A, B and D, we used the data 236 

collected by the rain gauge located downstream of plot A, thanks to their spatial proximity. In 237 

the case of missing data, we used average values across all rain gauges within the catchment 238 

area. 239 

3.2.1.2. Soil hydrodynamic parameters 240 

AquaCrop inputs include soil depth and soil moisture at wilting point (HWP) and at field ca-241 

pacity (HFC). We consider three soil classes: Vertisols for plots A, B, D and P5, Cambisols for 242 

plots P6, P7, and P8 and Luvisols for plot P9. Soil depth and hydrodynamic parameters for 243 

each plot are shown in Table 2. 244 

We summarize in this section the estimation of HWP and HFC; a detailed description is pro-245 

vided in Section 1 of the supplementary materials. We used the laboratory measurements (Cas-246 

sel and Nielsen, 1986) conducted within the framework of the OMERE Observatory, and the 247 

agroclimatic method (Sreelash et al., 2017) with discrete soil moisture measurements con-248 

ducted at specific dates. The comparison of the estimates resulting from these two approaches 249 

showed relative differences of approximately 15% on average (Table SP1 in supplementary 250 

materials), which corresponds to the precision and spatial representativeness of local field 251 

measurements, approximately 15% (Susha Lekshmi et al., 2014; Walker et al., 2004; Robinson 252 
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et al., 2008). Next, we verified the consistency of the HWP and HFC estimates with the time 253 

series of SWC (SWC data are presented in Section 3.3.6). This led to the use of the estimates 254 

from the laboratory measurements for plot A, and to the estimates from the agroclimatic 255 

method for the other plots.  256 

Table 2. Soil characteristics of the plots. Soil classes are taken from Mekki et al. (2006). We 257 

used the same values of soil depth for plots A, B and D thanks to their spatial proximity.258 

Plot Class Soil depth Soil hydrodynamic parameters (m3/m3) 
HWP HFC 

P5 Vertisol 1.60 0.23 0.45 
P6 Cambisol 1.50 0.21 0.35 
P7 Cambisol 1.60 0.23 0.44 
P8 Cambisol 1.20 0.19 0.46 
P9 Luvisol 1.60 0.25 0.47 
A Vertisol 1.15 0.34 0.43 
B Vertisol 1.15 0.26 0.44 
D Vertisol 1.15 0.23 0.44 

3.2.1.3. Crop parameters 260 

We chose wheat/barley, oats and faba bean as representative species of grain cereals, fodder 261 

cereals and legumes, respectively. In the literature, there are some annual crops for which Aq-262 

uaCrop parameterizations are not representative of various agro-environmental conditions. In-263 

deed, some parameterizations are proposed in the literature for chickpeas (Mubvuma et al., 264 

2021), leafy vegetables (Nyathi et al., 2018), table grape (Er-Raki et al., 2021), oats and faba 265 

bean (Yuan et al., 2013; Zeleke, 2019), but they need to be tested and confirmed in other geo-266 

climatic contexts and for other crop varieties to ensure that they are reliable, as is the case for 267 

those related to wheat or corn crops. 268 

For wheat, barley and faba bean, we used parameters proposed in the literature that were rather 269 

suitable for the local varieties of our study site, as indicated in Table 2 of Alaya et al. (2019). 270 

For oats, we used the values proposed by Yuan et al. (2013) for the conservative parameters 271 
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(invariant from one variety to another), and we used values related to wheat for the noncon-272 

servative parameters that describe the phenological stages throughout the crop cycle, due to the 273 

lack of data. 274 

3.2.2. AquaCrop multicriteria assessment 275 

3.2.2.1. Actual evapotranspiration (ETa) 276 

For actual evapotranspiration, two datasets were available (Table 1): the first dataset was col-277 

lected in plot A in 2013 for wheat, and the second dataset was collected in plot B in 2005 for 278 

oats. The time series were collected at the plot scale, with a 30 min timescale throughout the 279 

crop cycle. The daily ETa measurements were derived from the energy balance closure method 280 

in 2005 (Zitouna-Chebbi et al., 2015) and from the eddy covariance method in 2013 (Boudhina 281 

et al., 2017a). For 2013, the missing latent heat flux data were reconstructed using the REddy-282 

Proc gap-filling method (Reichstein et al., 2005). The experimentation, calibration, data pro-283 

cessing and gap-filling are discussed in detail by Zitouna-Chebbi (2009); Zitouna-Chebbi et 284 

al., (2012; 2015; 2018), and Boudhina et al., (2017a, 2017b, 2018). ETa data were finally ag-285 

gregated at the daily timescale. 286 

3.2.2.2. Crop variables (CC, AGB) 287 

When dealing with vegetation growth throughout the crop cycle, we used planimetric meas-288 

urements of the leaf area index (LAI) for cereals (wheat, barley, oats) and visual estimates of 289 

canopy cover (CC) for faba bean (Table 1). Nevertheless, AquaCrop simulates CC to describe 290 

crop growth. For cereals, we therefore converted LAI measurements into CC estimates by using 291 

Equation 1, as done in numerous studies (Katerji et al., 2013; Yuan et al., 2013; Pereira et al., 292 

2015): 293 

CC = 1 - e -k´LAI (Equation 1) 294 
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Coefficient k is an extinction coefficient that quantifies the light interception by canopy cover 295 

(Pereira et al., 2015). We used a k value equal to 0.57 for all cereals. The determination of this 296 

k value is discussed in Section 2 of the supplementary materials. 297 

We also used measurements of dry aboveground biomass (AGB), except for barley in plot D 298 

in 2006. For each of the eight datasets, AGB was determined throughout the crop cycle using 299 

a destructive method (i.e., field samples to be weighed before and after oven drying). Spatial 300 

sampling varied across datasets, ranging from three to 10 replicates (Mekki, 2003; Boudhina 301 

et al., 2019). For each crop, the number of observation dates also varied across datasets, be-302 

tween three and 11 dates at maximum. 303 

3.2.2.3. Soil water content (SWC) 304 

Time series of SWC measurements were available for all datasets (Table 1). For 2001, 2002 305 

and 2013, measurements were made using a neutron probe with a weekly frequency. For 2005 306 

and 2006, measurements were made by the gravimetric method, with a biweekly frequency 307 

throughout the crop cycle and with a bimonthly frequency during summer with bare soil. All 308 

measurements were carried out across 1 m depth profiles. To account for spatial variability in 309 

SWC, the samples were collected at different landscape positions (distributed across the top, 310 

middle and bottom of each plot), except for 2001 and 2002, with one measurement only per 311 

plot. The moisture values were obtained by plot-scale averaging of measurements. Detailed 312 

descriptions of the measurements are given in Mekki (2003); Zitouna-Chebbi (2009); Boudhina 313 

et al. (2019). 314 

3.2.2.4. Runoff (R) 315 

Runoff measurements were included in each of the datasets listed in Table 1, apart from oats 316 

in 2005 and barley in 2006. Runoff data were collected at the daily timescale. 317 
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● For 2001 (end of December) and 2002 (November), runoff was measured in each plot using 318 

a 2 m² size harvesting frame that was connected to a tank with a 20-litre capacity (Mekki 319 

et al., 2006). 320 

● For 2013, runoff was measured by the hydrological station located at the outlet of plot A. 321 

The experimental protocol is detailed in Inoubli et al. (2017).  322 

3.3. Determination of initial soil moisture and fertilization degree 323 

To obtain reliable AquaCrop simulations throughout the crop cycle for each of the nine datasets 324 

(Table 1), it was necessary to set the initial soil water content (SWCi). It was also necessary to 325 

set the fertilization rate (FR) for cereal crops, while no fertilization rate was required for faba 326 

bean that is a nitrogen-fixing legume crop (FR represents the effect of the soil nutrient level on 327 

canopy development and biomass production, and AquaCrop expresses the lack of soil nutrient 328 

from soil fertility stress, by means of stress coefficients). Given that no information was avail-329 

able for either SWCi or FR, we determined them by minimizing the differences between ob-330 

servations and simulations of CC, AGB and SWC (time series of ETa were available for only 331 

two datasets).  332 

For each of the nine datasets, we choose 15 SWCi values between HWP and HFC and 30 FR 333 

values ranging from 70 to 100% according to expert knowledge. We then created pairs (SWCi, 334 

FR) and generated the corresponding AquaCrop simulations. The optimal (SWCi, FR) pair was 335 

selected using two criteria. First, the NRMSE (normalized root mean square error) had to be 336 

lower than 15% for SWC, which corresponds to measurement error on soil moisture (Susha 337 

Lekshmi et al., 2014). Second, we minimized the quadratic error between the observations and 338 

simulations of CC and AGB simultaneously using the objective function F defined by Equation 339 

2 (Montes et al., 2014): 340 

F = NRMSECC1/2 + NRMSEAGB1/2   (Equation 2) 341 
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AquaCrop tends to overestimate CC observations during the senescence phase in the case of 342 

heat waves (Andarzian et al., 2011), while early senescence is recurrent in Kamech. To avoid 343 

the influence of any overestimation when minimizing the quadratic error, we calculated F over 344 

a simulation period that spread from the beginning of the crop growth to the maximum plant 345 

cover (CC = CC_max). Across the selected AquaCrop simulations, the obtained SWCi values 346 

were larger than 0.75 ´ HFC, and those retained for FR were approximately 85%. According 347 

to expert opinions, the FR values are representative of actual field conditions in the Kamech 348 

watershed.  349 

3.4. Model evaluation 350 

AquaCrop was evaluated by comparing simulations against observations throughout the crop 351 

cycle related to each of the nine datasets by considering the variables listed in Table 1 and 352 

related to vegetation (AGB, CC), water fluxes (ETa, runoff as infiltration excess), and water 353 

storage (SWC). Table 1 details the available data used for each crop, year and plot. 354 

For the statistical evaluation of the simulations against observations, we selected the following 355 

indicators: coefficient of determination (R2), root mean square error (RMSE), normalized root 356 

mean square error (NRMSE) and mean bias error (MBE). These are commonly used in the 357 

literature for evaluating numerical models (Kustas et al., 1996; Jacob et al., 2002), including 358 

hydrological (Moriasi et al., 2015) or crop (Yang et al., 2014) models. We also used the Stu-359 

dent’s t test for linear regressions on model validation, to test the null hypothesis (slope and 360 

offset can be equal to 1 and 0, respectively). If the critical values (p value) were larger than 361 

5%, then the null hypothesis could not be rejected with 95% confidence, and model perfor-362 

mances could be considered satisfactory. 363 

!! =	 ∑ %&" −	()
!#

"$%

∑ %(" −	()
!#
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 (Equation 3) 
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!*+, = 	-∑ (&/ − (/)!#
"$%

1  (Equation 4) 

2!*+, = 	!*+,( 	3	100 (Equation 5) 

*6, = ∑ (&/ − (/)#
"$%

1  (Equation 6) 

where Pi and Oi, are the simulated and observed variables at time step i, respectively. Ō is the 364 

averaged value of the observations, and n is the observation number. 365 

MBE indicates whether the model simulations underestimate or overestimate the observations. 366 

NRMSE gives an indication of the relative difference between simulations and observations. 367 

According to Jamieson et al. (1991), a crop model is classified as excellent if NRMSE < 10%, 368 

good if NRMSE ∈ [10% - 20%[, acceptable if NRMSE ∈ [20% - 30%[ and poor if NRMSE > 369 

30%. Likewise, simulations are considered acceptable if the coefficient of determination R2 is 370 

greater than 0.5. For runoff, we did not consider the NRMSE in the evaluation of the AquaCrop 371 

simulations because of the low values of this variable, which give very high NRMSE values (> 372 

100%) that are difficult to interpret.  373 

4. Results 374 

4.1. Canopy cover (CC) 375 

According to the comparison between AquaCrop simulations and in situ measurements of CC 376 

(Fig. 2 and Table 3), for each crop type, AquaCrop simulations overestimated observations for 377 

cereals and underestimated them for faba bean, with a positive MBE ranging between 0.03 and 378 

0.23 for cereals and a negative MBE (-0.02) for faba bean. The R2 values did not exceed 0.4, 379 

apart from faba bean (0.9). The RMSE values varied between 0.11 (29% relative) and 0.37 380 

(75% relative), with the lowest values being observed for faba bean. For wheat and faba bean, 381 

the t test provided p values larger than 5% on slope and offset. For barley, the t test provided p 382 
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value lower than 5% on slope and offset. For oats, the t test provided a p value lower than 5% 383 

on offset only.  384 

To study these results in detail, we analysed the temporal evolution of CC for each simulation 385 

throughout the corresponding crop cycle (Fig. SP2 in Section 3 of the supplementary materi-386 

als). For wheat in 2002, oats in 2005, and barley in 2006, the temporal evolution of the canopy 387 

cover simulated by the model showed acceptable estimates during the crop growth phase, de-388 

spite an overestimation of CC observations during the senescence phase. For wheat in 2013, 389 

AquaCrop underestimated observations between DAS (day after sowing) 25 and DAS 120, and 390 

it overestimated them at the end of the crop cycle. For oats in 2002, the model underestimated 391 

observations throughout the crop cycle. Most time series suggested that AquaCrop simulated 392 

senescence with delay compared to observations.  393 

 394 
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 395 

Fig. 2. Comparison between simulated and observed canopy cover (CC) on a crop type basis. 396 

Each scatterplot corresponds to a crop type for several years and/or several plots. Each da-397 

taset is indicated by a different marker and a different colour. Px, A, B, D relates to plots and 398 

YYYY to years. The black line corresponds to the regression line, and the black dashed line 399 

corresponds to the 1:1 line. 400 

Table 3. Statistical indicators when comparing simulations against observations for canopy 401 

cover (CC) on a crop type basis. n is the observation number. R2 is the correlation coeffi-402 

cient. The t test corresponds to the p value of the Student’s t test. The statistical indicators 403 

RMSE, NRMSE and MBE are defined in Section 3.4.  404 

Crop Var n R2 
(-) 

Offset  
(-) 

Slope  
(-) 

RMSE 
(-) 

NRMSE 
(%) 

MBE 
(-) 

Value t test Value t test 
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Wheat CC 12 0.39 0.10 0.47 0.80 0.55 0.21 58 0.03 
Oats 12 0.18 0.42 0.04 0.43 0.08 0.27 46 0.08 
Barley 3 0.33 0.72 0.02 0.02 0.02 0.37 75 0.23 
Faba 38 0.86 0.01 0.73 0.92 0.21 0.12 32 -0.02 

For each soil class, the comparison between AquaCrop simulations and in situ measurements 405 

of CC (Fig. 3 and Table 4) showed that AquaCrop simulations overestimated observations for 406 

the three soil classes. Additionally, the agreement between the model simulations and in situ 407 

measurements was moderate, with either (1) large R2 values (0.59 and 0.8) but large RMSE 408 

values (0.15 and 0.21, corresponding to 41% and 48% relative, respectively) or (2) a moderate 409 

RMSE value (0.09, 18% relative) but a low R2 value (0.05). Nevertheless, it was difficult to 410 

conclude for Luvisols because of the dataset size, with only one plot and one year. Conversely, 411 

the results for both Vertisols and Cambisols were similar, with relative changes in statistical 412 

indicators of approximately 25%. Apart from t test on slope for Vertisols, all p values were 413 

larger than 5%.  414 

Finally, we could not conclude on any possible trend to over- or under- estimation according 415 

to the magnitude of observations. Indeed, the regression slope could be larger or lower than 416 

one from one soil class to another, in contrast to results reported on a crop type basis for which 417 

the regression slope was systematically lower than one. 418 

 419 

 420 
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Fig. 3 Comparison between simulated and observed canopy cover (CC) on a soil class basis. 421 

Each scatterplot corresponds to a soil class for several plots, years and crops. Each dataset 422 

is indicated by a different marker and a different colour. Px, A, B, D relates to plots and 423 

YYYY to years. The black line corresponds to the regression line, and the black dashed line 424 

corresponds to the 1:1 line. 425 

Table 4. Statistical indicators when comparing simulations against observations for canopy 426 

cover (CC) on a soil class basis. n is the observation number. R2 is the correlation coeffi-427 

cient. The t test corresponds to the p value of the Student’s t test. The statistical indicators 428 

RMSE, NRMSE and MBE are defined in Section 3.4. 429 

Soil Var n R2 
(-) 

Offset  
(-) 

Slope  
(-) 

RMSE 
(-) 

NRMSE 
(%) 

MBE 
(-) 

Value t test Value t test 
Vertisols CC 39 0.59 0.12 0.05 0.77 0.03 0.21 47 0.01 
Cambisols 23 0.76 0.01 0.90 1.06 0.64 0.16 45 0.03 
Luvisols 3 0.05 0.61 0.20 -0.09 0.21 0.09 17 0.05 

4.2. Aboveground biomass (AGB) 430 

The comparison between simulated and observed AGB (Fig. 4 and Table 5), for each crop type, 431 

showed a good estimation of this variable by the model for cereals, with R2 approximately 0.95 432 

and RMSE approximately 0.6 ton ha-1 (16% relative). For faba bean, the simulations were less 433 

good, with R2 = 0.52 and RMSE = 1.4 ton ha-1 (46% relative). The bias values indicated that 434 

AquaCrop tended to overestimate AGB observations for cereals (MBE > 0) and to underesti-435 

mate them for faba bean (MBE < 0). For all crop types, the t test provided p values larger than 436 

5%. 437 

 438 
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 439 

Fig. 4. Comparison between simulated and observed aboveground biomass (AGB) on a crop 440 

type basis. Each scatterplot corresponds to a crop type for several years and/or several plots. 441 

Each dataset is indicated by a different marker and a different colour. Px, A, B, D relates to 442 

plots and YYYY to years. The black line corresponds to the regression line, and the black 443 

dashed line corresponds to the 1:1 line. 444 

 Table 5. Statistical indicators when comparing simulations against observations for above-445 

ground biomass (AGB) on a crop type basis. n is the observation number. R2 is the correla-446 

tion coefficient. The t test corresponds to the p value of the Student’s t test. The statistical in-447 

dicators RMSE, NRMSE and MBE are defined in Section 3.4. 448 

Crop Var n R2  
(-) 

Offset  
(ton ha-1) 

Slope  
(-) 

RMSE  
(ton ha-1) 

NRMSE  
(%) 

MBE  
(ton ha-1) 

Value t test Value t test 
Wheat AGB 19 0.96 0.22 0.34 0.95 0.30 0.61 16 0.03 
Oats 14 0.95 0.31 0.25 0.94 0.33 0.53 15 0.10 
Faba 14 0.52 0.64 0.44 0.82 0.43 1.40 46 0.08 

To better understand the poor results for faba bean, Fig. SP3 displays the temporal evolution 449 

of AGB for both cereal crops and faba bean during the crop cycle. We noted that AquaCrop 450 

appropriately simulated AGB for 2002 in plot P7. For the year 2001 in plots P5 and P8, the 451 

model acceptably simulated AGB at the beginning of the crop cycle until Day 125 after sowing, 452 
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but it overestimated observations at the end of the crop cycle. This could explain the low R2 453 

value given in Table 5. 454 

The comparison between AquaCrop simulations and in situ measurements of AGB (Fig. 5 and 455 

Table 6) for each soil class, showed that AquaCrop simulated AGB well for the 3 soil classes. 456 

Bias values indicated that the model tended to overestimate observations for Vertisols and Lu-457 

visols (MBE > 0) and to underestimate them for Cambisols (MBE < 0). The R2 values were 458 

above 0.84, with a small relative variation of 6% across the 3 soil classes. The RMSE values 459 

were between 0.62 ton ha-1 (17% relative) and 0.95 ton ha-1 (21% relative). Additionally, all 460 

regression slopes were close to one, as was the case when analysing results on a crop type basis. 461 

This outcome agreed with the results of the t test that provided p values larger than 5% for all 462 

soil classes. 463 

 464 

 465 

Fig. 5. Comparison between simulated and observed aboveground biomass (AGB) on a soil 466 

class basis. Each scatterplot corresponds to a soil class for several plots, years and crops. 467 

Each dataset is indicated by a different marker and a different colour. Px, A, B, D relates to 468 

plots and YYYY to years. The black line corresponds to the regression line, and the black 469 

dashed line corresponds to the 1:1 line. 470 
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Table 6. Statistical indicators when comparing simulations against observations for above-471 

ground biomass (AGB) on a soil class basis. n is the observation number. R2 is the correla-472 

tion coefficient. The t test corresponds to the p value of the Student’s t test. The statistical in-473 

dicators RMSE, NRMSE and MBE are defined in Section 3.4. 474 

Soil Var n R2  
(-) 

Offset 
(ton ha-1) 

Slope  
(-) 

RMSE  
(ton ha-1) 

NRMSE  
(%) 

MBE  
(ton ha-1) 

Value t test Value t test 
Vertisols AGB 25 0.86 0.35 0.24 0.94 0.42 0.92 33 0.17 
Cambisols 17 0.89 0.10 0.83 0.95 0.56 0.95 21 -0.13 
Luvisols 5 0.84 0.72 0.47 0.87 0.59 0.62 17 0.23 

4.3. Actual evapotranspiration (ETa) 475 

As shown in Table 1, ETa measurements were only available for oats in 2005 (plot B) and for 476 

wheat in 2013 (plot A). The comparison between AquaCrop simulations and in situ measure-477 

ments of ETa (Fig. 6 and Table 7) showed a slight overestimation of the observations. The 478 

overestimation was more important for oats (MBE = 0.28 mm day-1) than for wheat 479 

(MBE = 0.17 mm day-1). The other indicators showed that the model performance was accepta-480 

ble for both crops, with R2 ≥ 0.6 and RMSE ≤ 0.84 mm day-1 (35% relative on average). Addi-481 

tionally, we noted scatterings around the regression lines that were close to the 1:1 line. Apart 482 

from slope for wheat, the t test provided p values lower than 5%.  483 

Table 7. Statistical indicators when comparing simulations against observations for actual 484 

evapotranspiration (ETa) on a crop type basis. n is the observation number. R2 is the correla-485 

tion coefficient. The t test corresponds to the p value of the Student’s t test. The statistical in-486 

dicators RMSE, NRMSE and MBE are defined in Section 3.4. 487 

Crop Var n R2 
(-) 

Offset 
(mm day-1) 

Slope  
(-) 

RMSE  
(mm day-1) 

NRMSE  
(%) 

MBE  
(mm day-1) 

Value  t test Value t test 
Wheat ETa 134 0.59 0.54 0 0.82 0 0.69 33 0.17 
Oats 150 0.64 0.33 0.03 0.98 0.72 0.84 38 0.28 
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 488 

 489 

Fig. 6. Comparison between simulated and observed actual evapotranspiration (ETa) on a 490 

crop type basis. Each scatterplot corresponds to a crop type. A, B relates to plots and YYYY 491 

to years. The black line corresponds to the regression line, and the black dashed line corre-492 

sponds to the 1:1 line. 493 

For a better understanding of the scattering around the regression line, we investigated the 494 

temporal dynamics of ETa simulations by AquaCrop throughout the crop cycle for wheat and 495 

oats (Fig. SP4). We observed a significant similarity between the simulated and observed tem-496 

poral evolutions of ETa for both crops. For wheat, the overestimation of ETa observations by 497 

model simulations was more important from DAS 130 (9 Mar 2013). For oats, we observed an 498 

overestimation of ETa observations by the model between DAS 140 – (3 May 2005) and DAS 499 

160 - (23 May 2005) – as well as an underestimation of the observations from DAS 160 until 500 

the end of the crop cycle. Overall, we did not observe any trend to under- or overestimation 501 

according to crop phenological stages. 502 

The two datasets of ETa belonged to the Vertisols class. The statistical indicators we obtained 503 

when merging the scatterplots in Fig. 6 suggested good model performance in simulating ETa, 504 
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with acceptable values for the correlation coefficient (0.62) and RMSE (0.77 mm day-1) and a 505 

slight overestimation of ETa observations by model simulations (MBE = 0.23 mm day-1).  506 

4.4. Runoff (R) 507 

For runoff (infiltration excess), in situ measurements were available for all datasets, except for 508 

barley in plot D in 2006 and oats in plot B in 2005 (Table 1). The comparison between Aqua-509 

Crop simulations and in situ measurements (Fig. 7 and Table 8) for each crop type showed that 510 

the model overestimated observations. The magnitude of the overestimation varied from one 511 

crop to another, and it was larger for oats (MBE = 0.2 mm day-1). AquaCrop acceptably simu-512 

lated runoff for wheat and faba bean, with R2 values larger than 0.8 and RMSE values lower 513 

than 0.63 mm day-1. The simulations were less effective for oats (R2 = 0.41; RMSE = 514 

1.44 mm day-1). According to Fig. 7, the overestimation of runoff observations by AquaCrop 515 

simulations mainly occurred for low runoff values. For wheat in 2013 in plot A, the model 516 

acceptably simulated a significant runoff event (27 mm day-1) with a slight underestimation. 517 

For all crops, the t test on slope provided p values equal to 0. Apart from wheat, the t test on 518 

offset provided p values larger than 5%.  519 
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 520 

 521 

Fig. 7. Comparison between simulated and observed runoff (R) on a crop type basis. Each 522 

scatterplot corresponds to a crop type for several years and/or several plots. Each dataset is 523 

indicated by a different marker and a different colour. Px, A, B, D relates to plots and YYYY 524 

to years. The black line corresponds to the regression line, and the black dashed line corre-525 

sponds to the 1:1 line. 526 

Table 8. Statistical indicators when comparing simulations against observations for runoff 527 

(R) on a crop type basis. n is the observation number. R2 is the correlation coefficient. The 528 

t test corresponds to the p value of the Student’s t test. The statistical indicators RMSE, 529 

NRMSE and MBE are defined in Section 3.4.  530 

Crop Var n R2 
(-) 

Offset 
(mm day-1) 

Slope 
(-) 

RMSE 
(mm day-1) 

MBE 
(mm day-1) 

Value t test Value t test 
  

Wheat R 478 0.80 0.06 0.03 0.83 0 0.63 0.02 
Oats 147 0.41 -0.03 0.76 14.26 0 1.44 0.20 
Faba 453 0.84 0.01 0.25 1.32 0 0.19 0.02 

For a better understanding of these scatterplots, Fig. SP5 displays the temporal evolution of 531 

observed and simulated runoff for each dataset. Apart from wheat in plot A in 2013, the ob-532 

served runoff was usually low, with values below 15 mm day-1. The most important differences 533 

between observed and simulated accumulations were noted for wheat in plot P7 in 2001 (12 534 
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mm day-1) and for oats in plot P6 in 2002 (29 mm day-1). We also noted that the model simu-535 

lated large runoff values at the beginning of the crop cycle compared to in situ measurements. 536 

This was true for wheat in plot P9 in 2002 and in plot A in 2013, as well as for oats in plot P6 537 

and faba bean in plot P7 in 2002. The same trend was also observed at the end of the crop cycle 538 

(the last 40 days) for oats in plot P6 in 2002 and wheat in plot A in 2013. 539 

From the comparison between AquaCrop simulations and in situ measurements of runoff, for 540 

each soil class (Fig. 8 and Table 9) we noted a better performance of the model for Vertisols 541 

(R2 = 0.82, RMSE = 0.71 mm day-1), where the large R2 value for Vertisols likely results from 542 

a single large runoff event. The model performed worse for Cambisols (R2 = 0.22 and 543 

RMSE = 0.76 mm day-1) and Luvisols (R2 = 0.21 and RMSE = 0.28 mm day-1). The t test pro-544 

vided p values larger than 5% and lower than 5% for offset and slope, respectively. 545 

 546 

 547 

Fig. 8. Comparison between simulated and observed runoff (R) on a soil class basis. Each 548 

scatterplot corresponds to a soil class for several plots, years and crops. Each dataset is indi-549 

cated by a different marker and a different colour. Px, A, B, D relates to plots and YYYY to 550 

years. The black line corresponds to the regression line and the black dashed line corre-551 

sponds to the 1:1 line. 552 
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Table 9. Statistical indicators when comparing simulations against observations for runoff 553 

(R) on a soil class basis. n is the observation number. R2 is the correlation coefficient. The t 554 

test corresponds to the p values of the Student’s t test. The statistical indicators RMSE, 555 

NRMSE and MBE are defined in Section 3.4. 556 

Soil Var n R2 
(-) 

Offset  
(mm day-1) 

Slope 
(-) 

RMSE 
(mm day-1) 

MBE 
(mm day-1) 

Value t test Value t test 
Vertisols R 331 0.82 0.05 0.15 0.83 0 0.71 0.01 
Cambisols 587 0.22 0.06 0.07 1.54 0 0.76 0.08 
Luvisols 160 0.21 0.01 0.61 1.97 0 0.28 0.03 

4.5. Soil water content (SWC) 557 

From the comparison between AquaCrop simulations and in situ measurements of soil water 558 

content (SWC) (Fig. 9 and Table 10), for each crop type, we noted that AquaCrop simulated 559 

this variable very well, with R2 values between 0.76 and 0.95 and RMSE values between 18.5 560 

mm and 32 mm. The best simulations were observed with oats. The MBE values indicated that 561 

the model simulations slightly underestimated the SWC observations for oats and faba beans 562 

and slightly overestimated them for wheat and barley. Despite these favourable results, we 563 

noted that the regression slope could be far from the 1:1 line for wheat. Additionally, we could 564 

not conclude on any possible trend to over- or underestimation according to the magnitude of 565 

in situ measurements. Indeed, the regression slopes were lower than one, apart from oats (1.04). 566 

For oats and barley, the t test provided p values larger than 5%. For wheat, the t test provided 567 

p value lower than 5%. For faba bean, the t test provided a p value lower than 5% for slope.  568 

 569 
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 570 

Fig. 9. Comparison between simulated and observed soil water content (SWC) on a crop type 571 

basis. Each scatterplot corresponds to a crop type for several years and/or several plots. 572 

Each dataset is indicated by a different marker and a different colour. Px, A, B, D relates to 573 

plots and YYYY to years. The black line corresponds to the regression line, and the black 574 

dashed line corresponds to the 1:1 line. 575 

Table 10. Statistical indicators when comparing simulations against observations for soil wa-576 

ter content (SWC) on a crop type basis. n is the observation number. R2 is the correlation co-577 

efficient. The t test corresponds to the p values of the Student’s t test. The statistical indica-578 

tors RMSE, NRMSE and MBE are defined in Section 3.4. 579 

Crop Var n R2 
(-) 

Offset 
(mm) 

Slope 
(-) 

RMSE 
(mm) 

NRMSE 
(%) 

MBE 
(mm) 

Value t test Value t test 
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Wheat SWC 52 0.77 113.86 0 0.68 0 30.93 9 5.33 
Oats 30 0.95 -21.70 0.14 1.04 0.33 18.51 6 -8.05 
Barley 7 0.95 72.63 0.05 0.84 0.11 28.17 8 18.71 
Faba 55 0.76 48.99 0.05 0.84 0.01 31.98 9 -11.71 

The comparison between simulated and in situ measurements of SWC (Fig. 10 and Table 11), 580 

for each soil class, showed that the model well simulated SWC for the 3 soil classes, with a 581 

trend to underestimate observations for Vertisols and Cambisols and overestimate observations 582 

for Luvisols. The R2 values were above 0.79, with a relative variation of approximately 12% 583 

across the three soil classes. The RMSE values ranged from 25 mm to 30 mm, and the regres-584 

sion slopes were lower than one, apart from Luvisols. For Luvisols, the t test provided p value 585 

larger than 5%. For Vertisols and Cambisols, the t test provided p values lower than 5%. 586 

 587 

 588 

Fig. 10. Comparison between simulated and observed soil water content (SWC) on a soil 589 

class basis. Each scatterplot corresponds to a soil class for several plots, years and crops. 590 

Each dataset is indicated by a different marker and a different colour. Px, A, B, D relates to 591 

plots and YYYY to years. The black line corresponds to the regression line, and the black 592 

dashed line corresponds to the 1:1 line. 593 
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Table 11. Statistical indicators when comparing simulations against observations for soil wa-594 

ter content (SWC) on a soil class basis. n is the observation number. R2 is the correlation co-595 

efficient. The t test corresponds to the p values of the Student’s t test. The statistical indica-596 

tors RMSE, NRMSE and MBE are defined in Section 3.4. 597 

Soil Var n R2 
(-) 

Offset 
(mm) 

Slope 
(-) 

RMSE 
(mm) 

NRMSE 
(%) 

MBE 
(mm) 

Value t test Value t test 
Vertisols SWC 59 0.79 80.77 0 0.77 0 28.41 8 -5.37 
Cambisols 68 0.82 44.75 0.01 0.85 0 30.51 9 -6.69 
Luvisols 17 0.89 -4.38 0.89 1.07 0.48 25.30 8 17.29 

5. Discussion 598 

5.1. Canopy cover (CC) 599 

The large RMSE and NRMSE values on CC were ascribed to an overestimation of CC obser-600 

vations by AquaCrop simulations throughout the senescence phase. This overestimation could 601 

result from the fact that the model disregarded the effect of high temperatures on crop func-602 

tioning during the senescence phase (Andarzian et al., 2011). First, AquaCrop accounted for 603 

the effect of heat stress (low and high temperatures) on the pollination and harvest index only. 604 

Second, the early senescence we observed was not due to water stress: the seasonal courses of 605 

ETa and ET0 observed for wheat in 2013 in plot A (Fig. SP4) started to diverge as of DAS 140 606 

(19 Apr 2013), while senescence began at DAS 120 (30 Mar 2013). According to local farmers, 607 

early or sudden senescence of vegetation after heat waves has been observed in Kamech. 608 

Other studies reported overestimations of field observations by AquaCrop for CC at the end of 609 

the crop cycle for wheat in arid / semiarid climates, with lower magnitudes (Andarzian et al., 610 

2011; Sghaier et al., 2014; Toumi et al., 2016). Beyond such differences during the senescence, 611 

the method used to convert LAI to CC for cereals might be an additional source of uncertainty, 612 

since the conversion was calibrated on hemispherical photos and applied on planimetric meas-613 

urements, both observation types leading to physical differences (Jonckheere et al (2005). 614 
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5.2. Aboveground Biomass (AGB) 615 

AquaCrop simulated AGB well, with an overestimation trend at the end of the crop cycle (e.g., 616 

faba bean, Fig. SP3). This could be ascribed to the overestimation of CC observations by Aq-617 

uaCrop simulations during the senescence phase in relation to a possible delay in senescence 618 

by model simulations. For faba bean plot P5 in 2001, this could not be shown due to the lack 619 

of CC measurements at the end of the crop cycle. However, Fig. SP2 indicates a recurrent 620 

overestimation of CC observations by AquaCrop simulations at the end of the crop cycle for 621 

different crop types and soil classes. Other studies have reported an overestimation of AGB 622 

observations by AquaCrop simulations, either at the end of the crop cycle (Katerji et al., 2013; 623 

Ahmadi et al., 2015; Sandhu and Irmak, 2019) or during the growth phase (Sghaier et al., 2014). 624 

5.3. Actual evapotranspiration (ETa) 625 

AquaCrop showed acceptable performance in simulating ETa for wheat and oats, with a trend 626 

to slightly overestimate observations. The overestimation of ETa from DAS 130 (9 April 2013) 627 

for wheat and DAS 140 (3 May 2005) for oats could be related to the overestimation of CC 628 

observations during the senescence. Masasi et al. (2019) reported a similar trend for sorghum 629 

in a semiarid climate, and they suspected large atmospheric evaporative demand and poor char-630 

acterizations of soil hydrodynamic parameters. Despite this overestimation in ETa, AquaCrop 631 

well reproduced the divergence between ETa and ET0 courses at the end of the crop cycle. 632 

The differences between simulated and observed ETa values could also be due to (1) the eddy 633 

covariance measurements that tend to underestimate ETa (Boudhina et al., 2019; Leuning et 634 

al., 2012), and (2) the reconstruction of missing ETa data that induces uncertainties (Boudhina 635 

et al., 2018; Zitouna-Chebbi et al., 2018). Besides, Katerji et al. (2013) recalled that the ETa 636 

calculation method in AquaCrop has been subject to several criticisms, especially when applied 637 

in semiarid Mediterranean regions (Katerji and Rana, 2006; Lovelli et al., 2007). A first source 638 
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of error is assuming a constant surface resistance, since several studies in semiarid and arid 639 

regions have shown that it leads to underestimating ET0 compared to lysimeter measurements 640 

(Katerji and Rana 2006). A second source of error is using the default value proposed by Allen 641 

et al. (1998) for cultural coefficient Kc, since several works reported differences up to 40% 642 

between this value and those observed in situ (Katerji and Rana 2006). 643 

In contrast to the present study, previous works reported an underestimation for ETa by Aqua-644 

Crop for maize and tomato (Katerji et al., 2013) and for wheat (Toumi et al., 2016) in a Medi-645 

terranean climate. No explanation could be found for this contradiction. For two calibration 646 

plots, Toumi et al. (2016) reported RMSE values of 0.47 mm day-1 and 0.69 mm day-1, which 647 

were similar to the RMSE value found in the current study for wheat in 2013 in plot A. 648 

5.4. Runoff (R) 649 

For wheat in plot P7 in 2001, wheat in plot P9 in 2002, and oat in plot P6 in 2002, AquaCrop 650 

simulated significant runoff values on DAS 19 (3 Dec 2000), DAS 2 (13 Dec 2001), and DAS 651 

12 (11 Dec 2001), respectively. However, we could not evaluate AquaCrop simulations before 652 

the second half of December, due to the lack of in situ measurements. However, it was possible 653 

to verify the potential occurrence of runoff. According to Mekki (2003), rainfall greater than 654 

20 mm day-1 is likely to generate runoff, regardless of surface conditions. Thus, the rainfall 655 

recorded on DAS 19 for plot P7 in 2001, DAS 2 for plot P9 in 2002, and DAS 12 for plot P6 656 

in 2002 were equal to 40 mm, 20 mm, and 28 mm, respectively (data not shown), which could 657 

have produced runoff. This was also consistent with the slight increase of outlet lake level in 658 

early December (compared to mid-November, data not shown). Overall, the runoff simulations 659 

by AquaCrop early in the crop cycle were consistent with observations and expert knowledge. 660 

For wheat in plot P9 in 2002 (DAS 10, 21 Dec 2001), wheat in plot A in 2013 (DAS 9, 09 Dec 661 

2012), and oats in plot P6 in 2002 (DAS 20, 19 Dec 2001), we noted large values of model-662 
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simulated runoff early in the crop cycle, but we did not observe coincident runoff events from 663 

field observations. We observed the same difference between simulated and unobserved peak 664 

runoff at the end of the crop cycle, for wheat in 2013 in plot A and for oats in 2002 in plot P6. 665 

This could be explained by the presence of shrinkage cracks, which are known to generate 666 

preferential infiltration at the expense of runoff (Inoubli et al., 2017).  667 

Wolka et al (2021) reported one of the few assessments on the ability of AquaCrop to simulate 668 

runoff. They noted that AquaCrop simulated runoff with RMSE values ranging from 9.8 mm 669 

to 61.5 mm. However, it was difficult to compare these results with ours, because of larger 670 

rainfall and runoff accumulations for Wolka et al. (2021). 671 

5.5. Soil water content (SWC) 672 

AquaCrop showed good performance in simulating soil water content. For oats, the underesti-673 

mation of SWC observations was ascribed to the overestimations of ETa and runoff. The dif-674 

ferences between simulations and observations could be due to (1) inaccurate soil moisture 675 

initialisations, (2) poor characterizations of soil hydrodynamic properties (HWP and HFC) and 676 

(3) inadequate AquaCrop formalisms when simulating water fluxes (ETa, runoff, drainage). 677 

Additionally, disregarding capillary rise was not critical because most plots were located at 678 

slope tops and therefore relatively far from possible shallow aquifers. Overall, the errors in 679 

SWC simulations were ascribed to the characterization of soil hydrodynamic properties (HWP 680 

and HFC), given the accuracies of AquaCrop simulations for water fluxes and crop variables. 681 

Previous studies reported overestimations of SWC observations by AquaCrop simulations, no-682 

tably for wheat (Andarzian et al., 2011), maize (Nyakudya and Stroosnijder, 2014) and barley 683 

(El Mokh et al., 2017). These overestimations were often noticed during dry periods, which 684 

can be explained by constraints on SWC, since the latter cannot drop below HWP. 685 

5.6. Analysis by crop type and soil class 686 
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When dealing with AquaCrop performance according to crop type, AquaCrop could be used 687 

for predicting crop growth and biomass production. Oat crops could be used as animal fodder, 688 

which is a common practice within Kamech and the surrounding region, with subsequent graz-689 

ing and cutting operations throughout the crop cycle. However, AquaCrop does not account 690 

for the dynamics of the crop canopy induced by such agricultural practices. Nyathi et al (2018) 691 

tried to parameterize this practice for leafy vegetables, by performing independent simulations 692 

for any crop and assuming that the initial canopy cover (CC0) was reset according to the re-693 

maining canopy cover (from 1 to 2%) after each harvest. 694 

When dealing with AquaCrop performance according to soil class, the analysis of model sim-695 

ulations permitted us to draw partial conclusions only. The analysis of the model outputs for 696 

the AGB and SWC showed an acceptable performance in simulating these two variables across 697 

all soil classes. For runoff and CC, the best results were observed with Vertisols and Cambisols, 698 

respectively. For ETa, for which we had measurements on Vertisols only, no conclusion can be 699 

drawn regarding AquaCrop performance according to soil class.  700 

When dealing with linear regressions on validation for both crop types and soil classes, the 701 

t test provided p values larger than 5% for most cases (e.g., AGB, CC, SWC), which indicated 702 

that AquaCrop performances could be considered satisfactory. For some crop/soil combina-703 

tions, the t test provided p values lower than 5% (e.g., ETa, R, SWC), although the offset re-704 

mained relatively low (e.g., ETa and SWC offset for oats and Cambisols, respectively). 705 

5.7. Main outcomes 706 

To our knowledge, the present work is the first study using AquaCrop for faba bean and oats 707 

in a semiarid Mediterranean climate. According to the results we obtained, AquaCrop can ac-708 

ceptably simulate the functioning of these two crops by using crop parameters available in the 709 
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literature. Additionally, AquaCrop simulations are acceptable for various combinations of soils 710 

and crops across contrasted hydroclimatic years. 711 

Although there were gaps in database on which the current study relied, it was rich enough to 712 

draw several lessons. According to the results we obtained, the model performance was closely 713 

related to the formalism used for simulations. AquaCrop showed good performance in simu-714 

lating biomass and soil water content for all crops, on the basis of parameterizations and forcing 715 

(1) that were as adequate as possible for the crops and soils to be studied, and (2) that were in 716 

line with literature recommendations. The performance of the model was moderate for the sim-717 

ulation of CC, with a possible delay in senescence for most of the crops we addressed. The 718 

model showed acceptable performance in simulating ETa, although it was delicate to conclude 719 

according to the dataset size (2 years - plots).  720 

Runoff was poorly simulated at both the beginning and end of the crop cycle because of shrink-721 

age cracks for clay soils. Soil cracking is a complex phenomenon that is very difficult to include 722 

in numerical modelling, especially in simplified models. Runoff simulations were acceptable 723 

for the other stages of the crop cycle when the cracks were closed. Despite this, the simulations 724 

were acceptable to simulate the dynamics of soil water content and crop variables (AGB), as 725 

shown in Figs. 4-5-9-10 and Tabs 5-6-10-11, which was ascribed to the moderate influence of 726 

runoff on the soil water balance. However, in the perspective of agro-hydrological studies that 727 

require the consideration of lateral fluxes between the different components of the cultivated 728 

landscape (Van Loo and Verstraeten, 2021), the runoff modelling by AquaCrop was no longer 729 

acceptable for our study site, and it will be necessary to consider a more realistic runoff-infil-730 

tration partitioning model. 731 

6. Conclusion 732 
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For some soil/crop combinations that have been little studied to date, AquaCrop can acceptably 733 

simulate their functioning in terms of vegetation growth and water consumption, as well as in 734 

terms of soil water balance, by using parameters available in the literature. Additionally, Aq-735 

uaCrop can simultaneously simulate several variables in an acceptable manner, namely, above-736 

ground biomass, evapotranspiration, and soil water content. We highlight some limitations of 737 

AquaCrop in terms of vegetation cover and runoff in relation to delayed senescence and disre-738 

gard of swelling soils, respectively. 739 

The results of the current study are in good agreement with those reported in the literature, 740 

knowing that the previous studies mainly addressed flat terrains. Our study also showed that 741 

AquaCrop was able to acceptably simulate crop dynamics and water fluxes for contrasted hy-742 

droclimatic years, with a slight dependence on soil class and a significant dependence on crop 743 

type, including large differences from one variable to another. 744 

Our results open the path for further use of AquaCrop in the Mediterranean context, on which 745 

we focused, with forthcoming efforts on water availability and water productivity in relation 746 

to plot hydrological connectivities within hilly terrains. 747 
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Supplementary materials - Section 1: materials and methods - soil parameters  1 

Different approaches are proposed in the literature to determine soil moisture at wilting point 2 

(HWP) and at field capacity (HFC), including (1) pedotransfer functions (e.g., Saxton and 3 

Rawls, 2006) based on the texture of different soil horizons, (2) direct laboratory measurements 4 

from soil samples (Cassel and Nielsen, 1986) and (3) the agroclimatic method which determines 5 

HFC and HWP from soil moisture time series throughout the crop growth cycle (Sreelash et al., 6 

2017).  7 

According to expert knowledge about the soil conditions within our study site (Revaillot et al., 8 

2021), the pedotransfer functions are not suitable for the Kamech soils, since the latter are 9 

typified by large instability due to poor silt structure. Therefore, we determine HWP and HFC 10 

using the laboratory method and the agroclimatic method, and we compared the resulting 11 

estimates in order to choose the most reliable ones. 12 

For all plots, we had laboratory measurements of HFC and HWP carried out either on the plots 13 

or on neighbouring plots, along with soil moisture data. For the agroclimatic method proposed 14 

by Sreelash et al. (2017), HFC corresponds to the maximum soil moisture value without 15 

considering measurements after rainfalls or irrigation events, and HWP corresponds to the 5th 16 

percentile of the minimum soil moisture measured throughout the crop growth cycle. To 17 

determine HFC and HWP by the agroclimatic method, we used all soil moisture data available 18 

for each of the eight plots, beyond the datasets used for AquaCrop evaluation. This led to 19 

include additional soil moisture data from 2002 on plot P5 and P8, from 2001 and plot P6 and 20 

P9, and from 2006 on plot A. All the soil moisture measurements we considered were collected 21 

using the same protocol described in the Section 3.3.6 of the article. For HFC, we assumed that 22 

a rainfall accumulation lower than 10 mm does not have a large influence, and we therefore 23 

excluded all measurements for which a rainfall accumulation larger than 10 mm was recorded 24 

in the previous 48 hours. For HWP, we take the 5th percentile of the minimum value measured 25 

throughout the crop growth cycle. 26 

Table SP1 presents, for each plot, HWP and HFC estimates by laboratory measurements (Lab), 27 

and by the agroclimatic method (AC), as well as the relative difference Δ calculated as: 28 

∆ =  
𝐴𝐶−𝐿𝑎𝑏

𝐿𝑎𝑏
  (Equation SP1) 29 

where AC (respectively Lab) represents the HWP or HFC estimates by the agroclimatic method 30 

(respectively the laboratory method). 31 
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Table SP1 shows that HWP estimates from the agroclimatic method underestimated those from 32 

the laboratory method, with values of relative difference Δ between -26% and -18%, apart from 33 

plot D (32%). For HFC, the differences between the two methods were small, with values of 34 

relative difference Δ between -3% and 10%, apart from plot P8 (24%). In this case, HFC 35 

estimates from the agroclimatic method overestimated those from the laboratory method, apart 36 

from plot P6. 37 

Table SP1. Comparison between soil moisture at wilting point (HWP) and soil moisture at 38 

field capacity (HFC) estimates by the laboratory measurements (Lab) and the agroclimatic 39 

method (AC) methods. 40 

 HWP HFC 

AC 

(m3/m3) 

lab 

(m3/m3) 

∆ 

(%) 

AC 

(m3/m3) 

lab 

(m3/m3) 

∆ 

(%) 

P5 0.23 0.31 -26 0.45 0.41 10 

P6 0.21 0.27 -22 0.35 0.36 -3 

P7 0.23 0.31 -26 0.44 0.41 7 

P8 0.19 0.24 -21 0.46 0.37 24 

P9 0.25 0.33 -24 0.47 0.45 4 

A 0.28 0.34 -18 0.44 0.43 2 

B 0.26 0.34 -24 0.44 0.43 2 

D 0.23 0.34 -32 0.44 0.43 2 

Fig. SP1 displays the times series of soil moisture measurements, as well as the HFC and HWP 41 

estimates from (1) the laboratory measurements (HWP-lab and HFC-lab), and (2) the 42 

agroclimatic method (HWP-AC and HFC-AC) for each of all plots. Fig. SP1 shows that, apart 43 

from plot A, the soil moisture measurements before the harvest dates reach lower levels than 44 

the HWP estimates from the laboratory measurements.  45 

As a result, we selected the estimates from the agroclimatic method for all plots apart from plot 46 

A. For plot A, the differences between estimates from both methods were very low 47 

(10% relative, comparable to measurement errors), and we selected the estimates from 48 

laboratory measurements that were collected in the framework of the OMERE observatory.  49 



3/12 

 50 

 51 

Fig. SP1. Time series of soil moisture data (dotted lines) for each of the eight plots. The 52 

horizontal lines indicate the soil moisture at wilting point (HWP) and soil moisture at field 53 

capacity (HFC) estimates from the laboratory measurements (Lab) (red lines) and 54 

agroclimatic method (AC) (blue lines) methods. The vertical lines indicate the harvest dates. 55 

  56 
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Supplementary materials - Section 2: Materials and methods – Vegetation 57 

When dealing with growth cycle of cereals (wheat, barley, oats), we could use leaf area index 58 

(LAI) measurements performed with planimeters. In order to validate the AquaCrop 59 

simulations of canopy cover (CC), we used Equation SP2 to convert planimetry-based LAI data 60 

into CC, considering that this equation had been used in many studies (Araya et al., 2010; Abrha 61 

et al., 2012; Yuan et al., 2013; Pereira et al., 2015; Zeleke, 2019): 62 

𝐶𝐶 = 1 − 𝑒(−𝑘×𝐿𝐴𝐼)  (Equation SP2) 63 

The coefficient k is an extinction coefficient related to the interception of light by crop canopy 64 

cover (Jeuffroy and Ney, 1997; Pereira et al., 2015). It varies according to crop and variety. 65 

Different values of k have been proposed in literature for a given crop. For example, the 66 

proposed values for barley are k = 0.5 (Pereira et al., 2015), k = 0.48 (Belhouchette et al., 2008) 67 

and k = 0.65 (Abrha et al., 2012). For wheat, (Jin et al., 2014) proposed a k value of 0.65. 68 

To determine a k value that was suitable to our conditions, we used hemispherical photos that 69 

permitted to simultaneously estimate LAI and CC. These photos were collected between 2018 70 

and 2020 thanks to a camera equipped with a fisheye objective. Within each plot, between 10 71 

and 15 photos were collected in a random manner. Table SP2 summarises the number of plots 72 

and measurements available per crop. 73 

Table SP2. Number of plots and hemispherical photos available for each crop, to be used for 74 

determining the value of coefficient k in Equation SP2. 75 

Crop Years Plot number Measurements number 

Wheat 2018 - 2019 - 2020 8 42 

Barley 2019 - 2020 2 10 

Oats 2020 1 4 

The hemispherical photos were treated with the CAN-EYE software (Weiss et al., 2008) to 76 

derive first gap fraction, and then LAI and CC. CAN-EYE permitted to distinguish two types 77 

of LAI, namely (1) effective LAI that accounts for leaf aggregation, and (2) true LAI that 78 

corresponds to actual leaf surface. The different LAI estimates proposed by CAN-EYE are 79 

discussed in Weiss et al. (2008).  80 

 On the one hand, planimetry is a direct and destructive technique for determining leaf area 81 

index of any crop canopy. It permits the calculation of actual LAI from direct area 82 

measurements.  83 
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 On the other hand, hemispherical photography is an indirect, non-destructive technique that 84 

permits a significant spatiotemporal sampling of crop canopy within field and throughout 85 

the crop growth cycle. It includes other plant green elements such as stems, which 86 

corresponds to Plant Area Index (PAI) rather than LAI. 87 

 The goal here was to convert planimetric measurements of LAI into CC estimates by using 88 

Equation SP2. When estimating LAI from hemispherical photos, it was necessary to select 89 

the CAN-EYE method that provided LAI estimates as close as possible to the planimetric 90 

method. According to Weiss et al (2008), the true LAI calculated by CAN-EYE is the 91 

closest to the planimetric LAI, although the relationship between true LAI measured by 92 

CAN-EYE and planimetric LAI depends on crop and phenological stage (Demarez et al., 93 

2008; Fang et al., 2018). Therefore, we choose true LAI for equation SP2. 94 

For the present study, we decided to set a single k value for cereals (wheat, barley and oats), 95 

equal to 0.57 (R2 = 0.95; RMSE = 0.05). Indeed, the coefficient of variation between the 96 

different k values across cereal crops was about 15%, thus comparable to the measurement error 97 

(Weiss et al., 2008). Moreover, the three cereal crops we considered were straw cereals with 98 

similar leaf geometry that induces similar radiative transfer processes within the canopy. 99 

  100 
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Supplementary materials - Section 3. Results –canopy cover (CC) 101 

 102 

 103 

Fig. SP2. Temporal evolution of canopy cover (CC) for each dataset when available. The red 104 

points correspond to the ground-based observations, and the black curves correspond to the 105 

AquaCrop simulations. DAS stands for Day after Sowing. 106 

  107 



7/12 

Supplementary materials - Section 4. Results - aboveground biomass (AGB) 108 

 109 

 110 

Fig. SP3. Temporal evolution of Aboveground biomass (AGB) for each dataset when 111 

available. The red points correspond to observations and the black curve corresponds to 112 

AquaCrop simulations. DAS stands for Day after Sowing. 113 

  114 
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Supplementary materials - Section 5. Results - actual evapotranspiration (ETa) 115 

 116 

 117 

Fig. SP4. Temporal evolution of actual evapotranspiration (ETa) for each dataset when 118 

available. The red curve corresponds to ETa simulated by AquaCrop, the green curve 119 

corresponds to ETa measured in-situ by eddy covariance and the blue curve corresponds to 120 

reference evapotranspiration ET0. DAS stands for Day after Sowing. 121 

  122 
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Supplementary materials - Section 6. Results – runoff (R) 123 

 124 

Fig. SP5. Temporal evolution of runoff (R) for each dataset when available. The solid lines 125 

represent the temporal evolution of R. The dashed lines represent R accumulation. The blue 126 

colour indicates the simulations and the red colour indicates the observations. DAS stands for 127 

Day after Sowing. Y-Scales are chosen for both reading and intercomparing. 128 
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Supplementary materials - Section 7. Results – soil water content (SWC) 129 

 130 

Fig. SP6. Temporal evolution of soil water content (SWC) for each dataset. The red points 131 

correspond to SWC observations, and the blue curves correspond to the AquaCrop 132 

simulations. DAS stands for Day after Sowing. 133 

 134 

  135 
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