
HAL Id: hal-02554676
https://hal.archives-ouvertes.fr/hal-02554676

Preprint submitted on 26 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sub-daily stochastic weather generator based on
reanalyses for water stress retrieval in central Tunisia

Nesrine Farhani, Julie Carreau, Zeineb Kassouk, Bernard Mougenot, Michel
Le Page, Lili -Chabaane, Rim Zitouna, Gilles Boulet

To cite this version:
Nesrine Farhani, Julie Carreau, Zeineb Kassouk, Bernard Mougenot, Michel Le Page, et al.. Sub-daily
stochastic weather generator based on reanalyses for water stress retrieval in central Tunisia. 2020.
�hal-02554676�

https://hal.archives-ouvertes.fr/hal-02554676
https://hal.archives-ouvertes.fr


Sub-daily stochastic weather generator based on reanalyses for water1

stress retrieval in central Tunisia2

Nesrine Farhania,b,∗, Julie Carreauc, Zeineb Kassouka, Bernard Mougenotb, Michel Le Pageb, Zohra3

Lili-Chabaanea, Rim Zitouna-Chebbid, Gilles Bouletb4
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Abstract9

In semi-arid areas, evapotranspiration that characterizes plant water use and water stress are needed

to better manage water resources and agrosystem health. They both can be simulated by a dual source

energy balance model that relies on hydro-meteorological variables and satellite data. Available hydro-

meteorological observations may often be insufficient to account for the variability present in the study

area. Our aim is to adapt a stochastic weather generator (SWG) driven by large-scale reanalysis data

to semi-arid climates and to the sub-daily resolution. The SWG serves to perform consistent gap-filling

and temporal extension of multiple hydro-meteorological variables. It is compared with two state-of-the-

art bias correction methods applied to large-scale reanalysis data. The surrogate series that are either

produced by the SWG and the bias correction methods with a cross-validation scheme or taken as the

un-processed reanalysis data, are evaluated in terms of their ability to reproduce the statistical properties

of the hydro-meteorological observations. They are also used to constrain a dual source energy balance

model and compared in terms of estimated evapotranspiration and water stress.

Keywords: hydro-meteorological variables, evapotranspiration, semi-arid climate, gap-filling, bias10

correction methods, dual energy balance model, ERA511

1. Introduction12

In arid and semi-arid areas, water is a major limitation factor for agricultural production. Indeed,13

these areas are characterized by short rainy seasons and strong irregularity of precipitation events in time14

and space [9]. This generates natural variations in the water cycle that affect the availability of water,15

irregularities in agricultural production [44] and constitutes the main driver of agricultural droughts. In16

these areas, the vegetation health status is generally representative of water availability [46]. Therefore,17

an important issue concerns the monitoring of droughts derived from the state of the vegetation over a18

long period in the past.19

To achieve proper monitoring, a better understanding of the physical mechanisms leading to droughts,20
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in particular actual water use and water stress, is required. Plant water use can be obtained from the1

estimation of evapotranspiration which is the preponderant component of the terrestrial water balance2

and is crucial for scarce water resources management. On the other hand, detecting and quantifying3

drought events in the past allows to understand drought mechanisms and to predict drought occurrences.4

To this aim, water stress index or anomalies thereof can be computed. Water stress index reflects the5

state of the plant ranging from a no-stress (index equals to zero) to a stress condition (index equal to6

one) [26]. The probability that the water stress index exceeds a given threshold could be useful for7

drought monitoring. Anomalies of the water stress index give the status of the vegetation in comparison8

to the best and worst vegetation conditions for a particular monthly period over many years [7]. They9

help to make a relative temporal assessment of the severity of drought periods according to frequency,10

intensity, spatial extension and duration. Evapotranspiration and water stress indices may be estimated11

thanks to energy balance models.12

Dual source energy balance models provide more robust estimates of evapotranspiration as well as wa-13

ter stress than most models when meteorological forcing and vegetation cover are accurately known [17].14

This results from the fact that they account for the interactions between the soil and the vegetation that15

are two contrasting sources of turbulent and radiation fluxes. They combine medium to low resolution16

Remote Sensing (RS) data. RS data from the thermal infrared (TIR) domain is particularly informative17

for monitoring agrosystem health and adjusting irrigation requirements. Indeed, in water deficit condi-18

tions, plants reduce their transpiration rate to preserve the remaining water. This reduced transpiration19

triggers an increase in the leaf temperature that can be measured from thermal infrared sensors [29].20

Most energy balance models that estimate evapotranspiration and water stress from TIR data solve the21

latent heat flux from a residual term of the surface energy budget. As a result, total fluxes are derived22

and not the soil and vegetation components of the fluxes. Dual source energy balance models are able to23

compute separate energy budgets for the soil and the vegetation and therefore retrieve both evaporation24

and transpiration. Those fluxes correspond respectively to the water loss from the soil surface and from25

the root zone [4]. Two sources of data are required in these models : observations of hydro-meteorological26

variables (air temperature, relative air humidity, global radiation and wind speed), usually measured at27

gauged stations, and satellite information (Normalized Difference Vegetation Index, Leaf Area Index,28

albedo and surface temperature). However, hydro-meteorological observations are often insufficient to29

account for the strong temporal and spatial variability of the water fluxes in semi arid areas due to the30

sparsity of gauged networks, the lack of long observation periods and the presence of numerous gaps.31

Statistical downscaling methods applied to reanalysis data can serve to generate surrogate series of32

hydro-meteorological variables that either fill the gaps in the observation period or extend the observation33

period in the past. Reanalysis data combine observations and models thereby providing a multivariate,34
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spatially complete and coherent record, without gaps, of the global atmospheric circulation [18, 23]. In1

addition, reanalysis are available for a long period in the past (from 1950 till now). Nevertheless, their2

spatial resolution is too low (horizontal resolution of 31 km for ERA5 product [23]) and thus local-scale3

variability is not sufficiently accounted for [24]. To exploit such reanalysis data in energy balance models,4

statistical downscaling methods may be used. These methods have been developed to account for the5

scale mismatch between global circulation models’ simulations, that are the major source of information6

concerning climate change, and impact studies [35, 8]. Indeed, hydro-meteorological series at finer time7

scales are useful to select agricultural practices in response to water availability. Statistical downscaling8

consists in developing quantitative relationships between large-scale atmospheric variables (predictors)9

and local surface variables (predictands) in order to generate high resolution time series [50, 49]. There10

are two main families of statistical downscaling approaches : perfect-prog methods and model output11

statistics methods.12

Perfect-prog methods are downscaling methods that require temporal synchronicity between large-13

and local-scale data. A prominent class of perfect-prog methods are regression models that can represent14

linear or nonlinear relationships between predictands and the large scale atmospheric predictors [50].15

Linear regression is the most basic and frequently used predictive model [22]. Nevertheless, it fails to16

reproduce extreme events and observed variance [50]. Weather classification methods or weather typing,17

another class of perfect-prog methods, consist in classifying large scale weather into dominant weather18

types or states according to their synoptic similarity [50]. Local weather is defined by local situations from19

the observation period with weather states matching the current one. The weather types are necessarily20

the same on all periods considered but their frequency might be different [49]. This approach is very useful21

to provide multi-site and multi-variate series. However, it may be unsatisfactory whenever observation22

series are too short or the number of classifying predictors is large [47]. Stochastic weather generators23

(SWGs) can be used as perfect-prog methods as well. They are a class of flexible statistical models based24

on probability distribution functions [1]. They seek to reproduce observed statistical properties and25

are better suited to account for the variability in the observations. SWGs may provide high resolution26

surrogate series by introducing large-scale information (such as reanalysis) as covariates that influence27

the parameters of the probability distribution functions. Indeed, they allow long simulations of all hydro-28

meteorological variables at sub-daily scales [50]. These simulated series can be used to constrain water29

and energy balance models [25]. The main limitation in SWGs is the difficulty to adjust the parameters in30

a physically realistic and consistent manner [27]. Nevertheless, SWGs are promising flexible downscaling31

methods that can encompass regression models and weather type methods.32

Model Output Statistics (MOS) methods are downscaling methods that aims to link statistical proper-33

ties and do not require temporal synchronicity. Bias correction methods, the most important type of MOS34
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methods, aim to transform the distribution of low spatial resolution hydro-meteorological variables in or-1

der to match the distribution of the corresponding high resolution hydro-meteorological variables [48].2

Biases, which are systematic differences in distributional properties (mean, variance or quantile), are3

computed between the large- and local-scale variable of interest in a reference period and removed from4

the whole study period [13]. Bias correction methods do not seek to produce values of the local-scale5

variable that are perfectly synchronized with the observations. They rather aim at yielding values that6

should be closer to the observations in terms of distribution. Initial bias correction approaches were7

univariate [38] and performed bias correction variable per variable, i.e. not explicitly accounting for8

inter-variable dependency while most recent bias correction approaches are multivariate [13].9

In this work, we choose to adapt the multi-variable stochastic weather generator (SWG) proposed10

in Chandler [15] to the sub-daily resolution to perform gap-filling and temporal extension in order to11

estimate the water stress in semi-arid areas. The SWG is based on generalized linear models (GLMs) for12

each hydro-meteorological variable with a suitable probability distribution (Normal, Gamma or Binomial).13

The inter-variable dependencies are taken into account by including a subset of hydro-meteorological14

variables (excluding the one being modelled) in the covariates of the GLMs. Such interactions between15

the variables must be preserved to maintain consistency and realism [25]. As large-scale covariates taken16

from reanalysis data are introduced in the GLMs for all hydro-meteorological variables, the SWG can be17

considered as a statistical downscaling approach. Additional covariates are used in order to reproduce18

deterministic effects (geographical information, seasonal and diurnal cycles) and temporal persistence [15].19

We rely on a two-step backward selection procedure to determine a parsimonious set of relevant covariates.20

The proposed multi-variable sub-daily SWG is compared to two state-of-the art bias correction approaches21

applied to anomalies of hydro-meteorological variables over the diurnal cycles.22

In our comparative analyses, we considered CDF-t, a univariate bias correction method, and MBCn, a23

multivariate bias correction approach. The CDF-t method allows non-linear corrections [38]. It relies on a24

transformation of the distribution function of the variable at low resolution based on empirical distribution25

functions. The CDF-t method is designed to perform bias correction on one hydro-meteorological variable26

at a time. It has shown to perform well at reproducing the statistical distributions of the local series.27

However, the spatial, temporal and inter-variable dependence structures of the corrected series may28

be misrepresented which may lead to unrealistic situations [48]. This can be a major limitation for29

hydrological applications in which consistency between hydro-meteorological variables is crucial. The30

N-dimensional probability density function transform (MBCn) is a multivariate bias correction algorithm31

that considers jointly multiple hydro-meteorological variables [13]. All the characteristics of the observed32

continuous multivariate distribution of the local variable are transferred to the corresponding multivariate33

distribution of the simulated variables. The MBCn algorithm looks iteratively for linear combinations of34
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the variables and performs bias correction with a univariate algorithm on the linear combinations rather1

than on each variable separately. As several hydro-meteorological variables are needed for the energy2

balance model, multivariate bias correction approaches that correct simultaneously all the variables in3

order to preserve the inter-variable dependence structure could be useful.4

The three proposed statistical downscaling methods (multi-variable sub-daily SWG, univariate and5

multivariate bias correction methods) are used to simulate surrogate series on periods for which no6

observations are available at three stations in the Merguellil catchment in central Tunisia. The simulations7

can be carried over either a long period in order to provide temporal projections, in the past or in the8

future, of the observed series or over a short number of time steps to perform gap filling. The three9

surrogate series generated at the stations by the downscaling methods together with a fourth surrogate10

series taken as the un-processed large-scale reanalysis variables are evaluated and compared in terms11

two sets of criteria. The first set pertains to features of the hydro-meteorological observations to assess12

whether the distributions of the intensities and the strength of the inter-variable dependencies are well13

reproduced. The second set of criteria pertains to features of evapotranspiration and water stress that14

are estimated by a dual source energy balance model constrained with the surrogate series.15

The two main objectives of this paper are (1) simulation of evapotranspiration and water stress16

over a long period in the past using surrogate series and (2) comparison between the three proposed17

downscaling methods in terms their ability to mimic hydro-meteorological observations and their impact18

on the performance of water stress and evapotranspiration retrieval.19

2. Multi-variable sub-daily SWG20

We developed a stochastic weather generator (SWG) to simulate surrogate series of hydro-meteorological21

variables that reproduce the climatic variability of the study area. The aim of this work is to define a22

model for each hydro-meteorological variable based on its physical understanding and preserving its23

stochastic behavior. Surrogate hydro-meteorological series should be generated through multivariate24

models and at sub-daily temporal resolution. The proposed SWG builds on the approach proposed by25

[15] in the Glimclim package available in R programming environment. The Glimclim package is designed26

for the modeling and simulation of univariate or multivariate daily weather sequences at a single or at27

multiple sites. It relies on stochastic regression with Generalized Linear Models (GLMs), as described28

in section 2.1. The dependence between multiple hydro-meteorological variables is modeled by decom-29

posing the multivariate density with the product rule, see (4). Several covariates may be considered in30

the GLMs to account for temporal and spatial variability. Large-scale atmospheric variables may also be31

included in the covariates. We have made several developments, explained in the following sub-sections,32
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and independent stand-alone R library MetGen which is available upon request, to adapt the generator to1

our purposes and in particular, to extend it to the sub-daily resolution.2

2.1. Stochastic regression with generalized linear models3

Each hydro-meteorological variable is modeled by a regression model that is used stochastically for4

simulation according to its own probability distribution, whose parameters are driven by a large set of5

covariates, plus a random noise [30]. Indeed, noise can improve the ability of models to simulate climatic6

variables regimes and seasonal anomalies [42]. Classical linear regression makes the assumption that a7

hydro-meteorological variable Y given a covariate vector x ∈ Rd is normally distributed :8

Y |x ∼ N (βx, σ2), (1)

where β ∈ Rd is a vector of regression parameters and σ > 0 is the standard deviation. Stochastic9

regression consists, for a given x, in simulating from Eq. (1) instead of estimating Y by the conditional10

expectation, i.e. by E[Y |x] = βx. The covariates x influence the location parameter of the Normal11

distribution of which simulation is performed.12

Generalized Linear Models (GLMs) are based on a simple transformation of linear regression [37].13

They have been applied in several works to model hydrometerological variables in different contexts [16,14

2, 6]. GLMs allow the use of different types of probability distributions belonging to the exponential15

family. Besides the Normal distribution, the stochastic generator relies on the Gamma distribution which16

is useful to model hydro-meteorological variables that take only positive values such as precipitation. In17

the generator framework, the associated regression model is18

Y |x ∼ Gamma(µ(x), ν) µ(x) = exp(βx) (2)

where µ(x) > 0 is the mean parameter of the Gamma distribution and ν > 0 is the shape parameter.19

The stochastic generator also relies on the regression model associated to the Binomial distribution to20

model the probability of occurrence of precipitation as a discrete 2-category variable as follows :21

P(Y = 1|x) = (1 + e−βx)−1 ∈ [0, 1]. (3)

In the SWG, a probability distribution from (1)-(3) must be chosen for each hydro-meteorological22

variable Y (the local-scale variables in the downscaling framework). Next, suitable covariates x have23

to be selected. These will allow the distributions of the hydro-meteorological variables Y to vary in24

time and in space. The covariate set x may contain: (1) one or more of the other hydro-meteorological25

variables in order to maintain inter-variable dependencies, see sub-section 2.2, (2) large-scale variables26
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(from reanalysis data in our case), (3) seasonal and (4) diurnal cycles, (5) geographical information and1

(6) memory effects, see sub-section 2.3.2

2.2. Inter-variable dependencies3

In order to model the inter-variable dependencies among p hydro-meteorological variables Y1, Y2, . . . , Yp,4

the stochastic generator relies on a decomposition of the p-dimensional multivariate distribution given by5

the product rule :6

P(Y1, Y2, . . . , Yp) = P(Y1)

p∏
i=2

P(Yi|Yi−1, . . . , Y1). (4)

In the SWG, modeling the multivariate density P(Y1, Y2, . . . , Yp) boils down to modeling a series of7

conditional (except the first one which is unconditional) univariate densities P(Y1), P(Y2|Y1), . . . ,8

P(Yp|Yp−1, . . . , Y1). The sets of conditioning variables in the conditional univariate densities are in-9

cluded in the covariates x of the corresponding regression model, as described in sub-section 2.1. This10

ensures mutual consistency in the multivariate generator by incorporating inter-variable dependence.11

To determine the order of the decomposition in (4) and to reduce the number of conditioning variables,12

we rely on the dependence graph from Fig. 1. It is strongly inspired from the proposal made in the HydEF13

project [15] to apply Glimclim in the UK. According to Fig. 1, atmospheric pressure is our independent14

variable Y1 in (4), the wind speed depends on the atmospheric pressure, the air temperature depends15

on the wind speed and necessarily depends also on the atmospheric pressure but only indirectly, relative16

humidity depends on the wind speed and the air temperature, the global radiation depends on the air17

temperature and the precipitation depends on the global radiation.18

Figure 1: Inter-variable dependency graph associated with the product rule in (4) to model the dependence structure
of the hydro-meteolorogical variables in the SWG.

Therefore, in our proposed SWG, regression models, selected among (1)-(3), are fitted for each hydro-19

meteorological variable independently by maximizing the log-likelihood (with the glm function in the20

base package of R). Preliminary univariate analyses are essential to ensure the selection of appropriate21

probability distribution and covariates that will result in a good fit of each variable. The simulation22

of the multi-variable surrogate series from the fitted SWG proceeds following the order dictated by the23
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dependence graph in Fig. 1 : atmospheric pressure is simulated first, driven by the covariates presented1

in sub-section 2.3, wind speed is then simulated including among the covariates the series simulated for2

atmospheric pressure, and so on and so forth.3

2.3. Covariates4

Each hydro-meteorological variable is modeled separately by a regression model, as described in sub-5

section 2.1, for which specific covariates are selected. In addition to the conditioning variables that6

serve to preserve inter-variable dependency as explained in sub-section 2.2, several other covariates are7

considered.8

Important covariates are the large-scale variables provided by the ERA5 reanalysis [21]. As it relies9

on a consistent reprocessing of meteorological observations with data assimilation techniques, the ERA510

variable yields relevant meteorological information at an hourly time step on the 31 km × 31 km grid11

cell encompassing the gauged stations of interest. The stochastic generator aims at downscaling the12

information provided by the reanalysis, that is to simulate surrogate hydro-meteorological series at the13

spatial and temporal resolution of the gauged station. In addition to the large-scale variables, to account14

for temporal and spatial effects along with persistence in the surrogate series simulated by the stochastic15

generator, other covariates can be selected among the ones listed in Table 1.16

Table 1: Potential covariates to account for additional temporal and spatial variability and persistence.

Annual cycle effects
cos (2πd/k) , sin (2πd/k) with k ∈ (365, 183, 91, 30)
and where 1 ≤ d ≤ 365 is the day of the year

Diurnal cycle effects
cos (2πh/k) , sin (2πh/k) with k ∈ (24, 12, 6)
and where 1 ≤ h ≤ 24 is the hour of the day

Spatial effects x- and y-geographical coordinates

Memory effects

Var.lag : lagged values from the same Variable
SA.lag : lagged Spatial Averages
MA.lag : lagged Moving Averages at each station
SMA.lag : lagged Spatial Moving Averages
with lag taking values from 1 to 8 time steps
and MA with bandwidths from half a day to 3 days

2.4. Covariate selection17

As GLMs are relatively simple parametric models, the complexity of the variability of the hydro-18

meteorological variables can be reproduced thanks to an adequate choice of covariates. Indeed, since19

hydro-meteorological variables display high spatio-temporal variability in semi-arid climates, many ad-20

ditional covariates among the ones listed in Table 1 might be needed. A covariate selection procedure21

adapted for our study area, see Fig. 2, is thus necessary. To this end, we propose a backward procedure22

that starts with a large initial set of covariates containing a large number of cycles and memory effects23

from Table 1. This initial set includes four pairs of sine and cosine to account for annual cycle effects,24
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three pairs of sine and cosine to account for diurnal effects, and lags of up to eight time steps for each1

of the four types of memory effects, with a moving average bandwidths ranging from half a day to three2

days. Pruning this initial large covariate set is performed based on a two-step procedure.3

First, LASSO regression [20] is applied to perform a preliminary screening. LASSO regression solves4

a regularized least squares problem which balances model complexity and model goodness-of-fit. It is5

recognized for its potential to perform simultaneously variable selection and parameter estimation [32].6

Although it might only be an approximate regression model in non-gaussian cases, LASSO is straightfor-7

ward to apply and it yields parsimonious solutions, i.e. with few covariates.8

Second, a series of diagnostic tools are mobilized to identify the most significant covariates among9

the ones retained by LASSO. Conventional goodness-of-fit statistics such as the AIC (Akaike Information10

Criterion) [3] and BIC (Bayesian Information Criterion) [45] penalize models with too many covariates in11

order to avoid unnecessary and redundant information [43]. In practice, AIC and BIC indicate whether the12

removal of a given covariate is detrimental to the fit. Other diagnostic tools involve maximum likelihood13

ratio test [12], residual plots with various temporal frequencies (annual, monthly, daily) and covariate14

coefficient p-values. Nevertheless, the final verdict concerning covariate selection remains validation15

analyses (see Section 4 and 5), i.e. whether the stochastic generator with the selected covariates can16

reproduce satisfactorily the observation properties on data not used for calibration.17

3. Water stress estimation in central Tunisia18

3.1. Merguellil catchment19

The study site called the Merguellil catchment lies in a semi-arid region located in central Tunisia, see20

Fig. 2. It is characterized by a relatively mountainous upstream area (1200 km2) and by a downstream21

alluvial plain (676 km2). The upstream area presents a hilly topography (altitude between 200 and 120022

m with a median elevation of 500 m) [34]. However, in the plain, the landscape is mainly flat, and23

the vegetation is typical of semi-arid regions: rainfed agriculture (olive tree and cereals) and summer24

vegetables (melons, peppers and tomatos). Farms in the downstream are composed mainly of small25

cultivated areas [39]. The upstream and downstream areas are separated by the El Haouareb dam26

(Fig. 2), which was built in 1989 to protect the village from inundations and to store irrigation water for27

the plain [10].28

The study area is influenced both by the Mediterranean climate (dry subhumid) and the pre-Saharan’s29

climate (arid). It is characterised by the inter-annual irregularity of precipitation, with an average of30

annual rainfall of about 300 mm per year, and by a high evaporative demand of about 1600 mm per year.31

There is no balance between water supply and water demand. Indeed, the demand for water is rising32
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Figure 2: Localisation of gauged stations : Merguellil catchment in central Tunisia.

steadily, due to the increase in population and industrial development, but most importantly due to the1

intensification of agriculture, which is the main water consumer (around 80 %) [33].2

The gauged network in the Merguellil catchment has five stations (Fig. 2). There is a station called3

Skhira located upstream in the mountainous area. Three stations, Ben Salem, Chebika and Barrouta,4

are very close to each other downstream of the El Houareb dam. The fifth station, Nasralah, is close by5

but lies outside the downstream plain. Six hydro-meteorological variables, namely atmospheric pressure,6

wind speed, air temperature, relative humidity, global radiation and precipitation, are measured and7

collected at these five stations at a half hourly time step since 2012 for the earliest ones.8

We apply the sub-daily stochastic weather generator described in Section 2 on the observation series9

from the three gauged stations located in the Merguellil downstream plain, namely Ben Salem, Chebika10

and Barrouta (see Fig. 2). These stations present geographical and meteorological proximity thus sharing11

the same local climate. Our aim is to combine the information from the three gauged stations to obtain a12

single multi-variable series that is representative of the local climate of the Merguellil plain. Although the13

generator is calibrated on the three stations and can simulate series at each one of them, a single series14

is retained for the subsequent analysis, see Sections 4 and 5. The retained series corresponds to the Ben15

Salem station which is our reference station as it complies more closely with the prescribed standards of16

meteorological station according to WMO guidelines [41].17
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3.2. Dual source energy balance model1

Dual Source energy balance algorithms provide separate estimates of the two main components of2

evapotranspiration, the evaporation and the transpiration, from remotely sensed data [31]. A separate3

estimate of transpiration is needed to assess plant water status and plant water use for sustainable man-4

agement of crops (for drought monitoring or irrigation scheduling for instance). This is particularly the5

case for arid areas, which are characterized by sparse crop canopy, and for which the relative contribution6

of evaporation (E) and transpiration (T) can vary throughout time space [36]. In most cases, the soil7

surface is rather dry while the root zone holds a significant amount of moisture.8

The challenge is to compute the energy partitioning between the soil and the plant rather than9

the whole agrosystem complex. In this case, the soil vegetation system is considered as a two layer10

model [40]. The crucial elements of these two-component models are the radiometric temperature and11

aerodynamic temperature [40]. Indeed, the contribution of canopy and soil to fluxes depend on differences12

in temperatures between each component as well as with the atmosphere above the canopy [40]. Besides,13

an estimate of the fractional vegetation cover and of the view angle, is needed to derive the link between14

the radiometric temperature, e.g. available from satellite platforms, and the source temperatures of the15

soil and the vegetation (Ts and Tv, respectively).16

In this work, we use the dual-source model Soil Plant Atmosphere and Remote Evapotranspiration17

(SPARSE) [11] which is based on the same rationale as TSEB (Two-Source Energy Balance model) [40].18

SPARSE derives, from the remotely sensed surface temperature Tsurf, separate estimates of the instan-19

taneous fluxes of the soil (subscript s) and vegetation (subscript v) components of the total fluxes of the20

energy budget at the satellite overpass time: net radiation (RN), soil (G), sensible (H) and latent heat21

(LE) expressed in W/m
2
.22

The SPARSE model can be run under two modes: a retrieval mode to simulate actual evaporation23

and transpiration from Tsurf, and a prescribed mode which simulates evaporation and transpiration rates24

for known stress levels (for instance, the two extremes of the water status spectrum: fully stressed or25

maximum moisture i.e. potential conditions). The prescribed mode provides an estimate of the potential26

latent flux for the soil and the vegetation (LEspot and LEvpot respectively). In retrieval conditions,27

the respective stress levels (between non evaporating/transpiring and potential rates) correspond to two28

unknown which are solved from the single piece of information (Tsurf) with the following simplification29

to solve the underdetermined problem : first, the vegetation is assumed to be unstressed. Tsurf is used30

to estimate LEs. If the vegetation is suffering from water stress, the resulting LEs will decrease to31

unrealistic levels (negative values). In that case, we assume that the soil surface is stressed and LEs is32

set to a minimum value close to zero. Then the energy budget equation is solved for LEv. If LEv is also33

negative, fully stressed conditions is imposed for both soil and surface components [44].34
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Water stress index (SI) is then defined from the actual and potential evapotranspiration rates simu-1

lated from retrieval and prescribed mode respectively at the time of the satellite overpass. This index2

can be defined to describe the water status for only the soil or vegetation rates (using LEs or LEv) or3

even for the soil-vegetation composite using the sum, as follows :4

SI = 1− LEv + LEs

LEvpot+ LEspot
. (5)

If the actual evapotranspiration value is close to the potential value, the stress index takes low values5

close to zero that reflect unstressed conditions. However, if the actual evapotranspiration is low comparing6

to its potential value, the stress index values may reach 1, which represents fully stressed conditions. On7

the other hand, daily evapotranspiration is derived from an extrapolation algorithm in order to reconstruct8

its sub-daily variations by assuming the self preservation of the evaporative fraction [19]. Variables are9

not computed during days with no RS observations (cloudy days).10

3.3. Surrogate series’ evaluation procedure11

The stochastic weather generator (SWG), described in Section 2, can be used either in a gap fill-12

ing mode in which missing values during the observation period are imputed, i.e. plausible values are13

simulated by the generator to replace them or in a projection mode in which the generator simulates14

values on a period with no observations to extend the observations temporally. In the gap filling mode,15

the generator simulates surrogate series on short periods and is strongly constrained by the observations16

while in the projection mode, the generator runs freely for a long period.17

For the validation in the gap filling mode, we perform a random removal of observations in order to18

introduce artificially missing values (see Fig 3). The SWG is calibrated on the non-missing values and19

gap-filled values are compared with observations that were set aside. Around 15 % of the observations20

are removed over a common period for the three gauged stations lying in the Merguellil downstream21

plain (see Fig. 2) denoted as S1, S2 and S3 in Fig 3. In the projection mode, the evaluation procedure22

is based on a cross-validation setup. The observation period covers five years (2012-2016). Each year is23

kept aside in turn for validation while the four remaining years serve to calibrate the SWG. This allows24

to produce hydro-meteorological surrogate series over the complete observation period and to assess the25

SWG’s performance when it runs freely over a year.26

On one hand, performance criteria pertain to the hydro-meteorological surrogate series themselves27

in order to evaluate how well they reproduce the observations. On the other hand, they are related to28

the variables (ET and SI) simulated by SPARSE model mentioned in sub-section 3.2, when constrained29

either by the observed series or by the surrogate series.30
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Figure 3: Validation scheme of the gap filling mode : selection of a common observation period for the three stations
in the Merguellil plain (denoted as S1, S2 and S3) and random removal of observations over that period. The evaluation
is performed on the removed observations.

4. Multi-variable sub-daily SWG in the Merguellil1

This section is devoted to the evaluation of the feasibility of the application of the sub-daily stochastic2

weather generator (SWG) described in Section 2 to the three gauged stations situated in the Merguellil3

downstream plain, see Fig. 2. Model selection, see sub-section 4.1, consists in the selection of the appro-4

priate probability distribution for each hydro-meteorological variable, see (1)-(3), the choice of covariates5

deduced from ERA5 reanalyses and the selection of other spatio-temporal effects in the covariates, see6

Table 1. We had to revise many times model selection until validation results, see sub-sections 4.2 and 4.3,7

were deemed satisfactory. A single gap filled series, corresponding to the Ben Salem station, is produced8

and retained to apply the bias correction methods in Section 5.9

4.1. Model selection10

The selection of the probability distributions presented in Table 2 was performed by visual inspection11

of the histogram of the hydro-meteorological variable considered. The Gaussian distribution, in three12

instances combined with preliminary transformations as indicated in Table 2, is used for all the variables13

except for precipitation occurrence and intensity. In contrast to precipitation occurrence which is simu-14

lated stochastically, the global radiation occurrence is deterministic. Indeed, the sunrise and the sunset15

are determined based on the coordinates of the station and the day of the year (see R package insol).16

Nocturnal time steps, where global radiation is set to zero, are thus identified.17

Covariates deduced from ERA5 reanalysis are selected for each hydro-meterological variable as follows,18

see Table 3. For all variables but the atmospheric pressure for which mean sea level pressure is used,19

the large-scale version of the hydro-meteorological variable is taken. In most cases, this corresponds to20

raw reanalysis products, as indicated in Table 3. In contrast, the large-scale covariate for the wind speed21

13



Table 2: Preliminary transformations and selected probability distributions.

Hydro-meteo. variable Transformation Probability distr.
Air Pressure Pr 7

Gaussian, see (1)
Wind speed WS ln(exp(WS)− 1)
Air temperature AirT 7
Relative humidity Rh tan(π(Rh− 0.5))
Global radiation intensity GR ln[max(ln(GR))− ln(GR)]
Precipitation occurrence Precip
occ

7 Bernoulli , see (3)

Precipitation intensity Precip
int

7 Gamma, see (2)

(WS) was derived by applying a drawdown of the 10 m vertical and horizontal wind components from1

ERA5 products to 2 m [5], to match the gauged station’s measurements, and by taking the Euclidean2

norm of the two wind components. The large-scale covariate for the relative humidity was also derived3

based on 2 m temperature and 2 m dewpoint temperature ERA5 products, according to the procedures4

defined in Allen et al. [5]. For a single hydro-meteorological variable, namely global radiation, we selected5

a second large-scale covariate, total cloud cover, which was found useful to improve the fit. This large6

scale variable is related to the presence of clouds that reduces the proportion of global radiation.7

To match the half-hourly temporal resolution of the hydro-meteorological observations, the large-scale8

covariates, that are available at the hourly time-step (i.e. the temporal resolution of the ERA5 products)9

have each hourly values sampled twice.10

Table 3: Large-scale covariates deduced from ERA5 reanalyses for each hydro-meteorological variable (see Table 2
for the abbreviations).

Hydro-meteo. variable Large-scale covariate
Pr mean sea level pressure (raw)
WS 2 m wind speed (derived)

AirT 2 m temperature (raw)
Rh relative humidity (derived)

GR
surface solar radiation downwards (raw)
total cloud cover (raw)

Precip total precipitation (raw)

Based on the covariate selection procedure outlined in sub-section 2.4, in addition to the large-scale11

covariates in Table 3 and the variables to account for inter-variable dependencies (see sub-section 2.2),12

the final set of covariates selected among the potential ones listed in Table 1 are summarized in Table 4.13

The selected oscillation periods for the sine and cosine dedicated to annual and diurnal cycle effects are14

indicated in days and in hours respectively. Regarding the memory effects, the length of the longest lag is15

specified. For example, for the air pressure, we considered a spatial average (SA) lagged of one time step16

and the values of the variable (Var) lagged up to three time steps. In two instances, additional covariates17

were introduced to improve the fit of the SWG. These additional covariates are : wind breaker, a binary18

covariate pointing out the presence of a wind breaker at the station Chebika, seasons, a binary covariate19

14



indicating the rainy season and stations, a three category covariate related to the three gauged stations.1

4.2. Annual and diurnal cycle validation2

Annual and diurnal cycles are the primary features the stochastic weather generator (SWG) should3

be able to reproduce in order to be useful for water stress estimation. These are computed by averaging4

values of each time step (half hour) in the day for diurnal cycles and in each month for annual cycles over5

the study period. We compare observations’ cycles with cycles computed from the un-processed large-6

scale variables (see Table 3) and from the series generated by the SWG in projection mode, i.e. when7

surrogate series are obtained by a cross-validation procedure for the whole observation period (2012-2016)8

by leaving aside each year in turn for validation. Further evaluation in projection mode is deferred to9

Section 5 in which the SWG is compared with two state-of-the-art bias correction methods. The latter10

methods being applied to anomalies of the diurnal cycles computed for three seasons (see Section 5),11

cycles are well reproduced by construction.12

In Fig. 4, we see that the cycles computed from large-scale variables (see Table 3), accurately repro-13

duce observations’ cycles for some hydro-meteorological variables. This is the case for air temperature,14

relative humidity and global radiation. However, the cycles computed from the large-scale variables for15

atmospheric pressure and the precipitation are over-estimated. In contrast, the wind speed cycles are16

under-estimated by the large-scale variable : in the diurnal cycle, the peak in the afternoon is not high17

enough and the annual cycle fails to reach observed high values. Despite these initial deviations in the18

large-scale variables behavior, the SWG is able to correct these and to reproduce correctly annual and19

diurnal cycles for most variables (precipitation being more challenging).20

4.3. Gap filling mode validation21

The multi-variable sub-daily SWG is then evaluated in gap filling mode. To this end, around 15% of22

the observations are removed at random over a common period, see sub-section 3.3. In Fig. 5, quantile-23

quantile plots for these 15% observations randomly removed and gap-filled serve to evaluate how well24

imputed values match the observations in terms of distribution. Results are presented for the Ben Salem25

station, our reference station as explained in sub-section 3.1 for which air pressure is not available hence26

there is no quantile-quantile plot for this hydro-meteorological variable. The other two stations displayed27

similar results (not shown). In addition, inter-variable dependencies, as measured by Kendall’s rank28

coefficients [28], were well preserved (results not shown). Overall, the gap filling mode was found to29

perform well. The SWG was run again in gap filling mode on the original observation series in order to30

produce continuous series without missing values for all stations over the observation period.31
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Figure 4: Annual and diurnal cycles for all hydro-meteorological variables (see Table 2) at the Ben Salem gauged
station in the Merguellil downstream plain (see Fig. 2).

Figure 5: Quantile-quantile plots for each hydro-meteorological variables (see Table 2) simulated in gap filling mode
( 15% values removed at random) for the Ben Salem station, see Fig. 2.
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5. Evaluation and comparison in projection mode1

The multi-variable sub-daily SWG proposed in Section 2 is further evaluated and compared, in pro-2

jection mode, with two state-of-the-art bias correction methods, namely a univariate approach called3

CDFt [38] and a multivariate approach called MBCn [13]. Bias correction methods seek to correct system-4

atic differences in distributional properties (mean, variance or quantile) between a hydro-meteorological5

variable measured at a station (local-scale) and its large-scale counterpart. These methods, like the6

SWG, do not attempt to reproduce the chronological order of the local observation series. The local-scale7

meteorological observations are taken from the gap filled Ben Salem series produced by the SWG, see8

Section 4, and the large-scale variables are the same as listed in Table 3.9

To remove systematic fluctuations from the hydro-meteorological variables, which are assumed to be10

constant over the period considered, the bias correction methods are applied on anomalies, defined as11

deviations from the diurnal cycles, of the large- and the local-scale variables. Working with anomalies12

allows to focus on random fluctuations around the diurnal cycles. These are computed for three seasons :13

summer (June to August), winter (November to March) and mid-season (the remaining months). To14

match the temporal resolution of the reanalysis product, the anomalies from the hydro-meteorological15

observation series are sub-sampled at the hourly time step. Conversely, to match the temporal resolution16

of the original observation series, the corrected large-scale anomalies are interpolated linearly to the17

half-hourly time step.18

5.1. Evaluation in terms of hydro-meteorological variables19

In what follows, surrogate series include the hydro-meteorological series generated in projection mode20

(i.e. in the cross-validation setup, leaving aside one year each time) either by the SWG or the two21

bias correction methods. Surrogate series also designate the un-processed large-scale variables obtained22

from the reanalysis products, i.e. without downscaling (see Table 3). First, we evaluate whether the23

distribution of each hydro-meteorological variable is well reproduced. To this end, we rely on quantile-24

quantile plots (Fig. 6). The large-scale variables deduced from the ERA5 reanalysis reproduce well the25

distributions of air temperature (Fig. 6c) and relative humidity (Fig. 6d) as can be seen from the good26

alignment along the first bisector, the red line in the quantile-quantile plots. The series generated from27

the bias correction methods are also accurate for these two hydro-meteorological variables however the28

series simulated by the SWG are slightly distorted for the relative humidity, see Fig. 6d. In contrast,29

some under-estimation occurs (quantile-quantile plots under the first bisector) for the higher values of30

global radiation (Fig. 6e), wind speed (Fig. 6b) and precipitation (Fig. 6f) for the large-scale variables.31

Bias correction methods are able to correct this under-estimation. The SWG also overcomes this initial32

bias of the large-scale variable but not always as well, see Fig. 6b. In Fig. 6a, we observe that the mean33
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sea level pressure variable from the ERA5 product has a systematic positive bias (atmospheric pressure1

is on average higher at sea level than at the stations’ level). The SWG along with the two bias correction2

methods are able to correct this positive bias.3

(a) Atmospheric pressure (b) Wind speed (c) Air temperature

(d) Relative humidity (e) Global radiation (f) Precipitation

Figure 6: Quantile-quantile plots for each hydro-meteorological variable to compare surrogate series (un-processed
large-scale variables, SWG series and the two bias corrected series) on the y-axis with the observations on the x-axis.

Second, we assess whether the inter-variable dependencies are well reproduced. This is achieved in4

Fig. 7 by comparing Kendall’s rank correlation coefficients from the observed series with those of the5

surrogate series (SWG and bias corrected series and un-processed large-scale variables listed in Table 3).6

Positive values indicate that both variables tend to increase or decrease simultaneously while negative7

values indicate that they tend to vary in an opposite manner. A value near zero signals a lack of8

dependence. In Fig. 7, there is an overall good alignment along the first bisector (the red line) showing that9

the inter-variable dependence strength is relatively well preserved in all cases. Nevertheless, compared10

with the two bias correction methods and the large-scale variables, the inter-variable dependence strength11

in the series produced by the SWG are more tightly aligned with the first bisector.12

5.2. Evaluation in terms of water stress estimation13

In this section, the surrogate series are compared in terms of their ability to constrain the SPARSE14

model (see sub-section 3.2) in order to retrieve daily evapotranspiration (ETd) and water stress index15
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Figure 7: Kendall’s rank coefficients for each pair of hydro-meteorological observed series on the x-axis and estimated
on the y-axis by the surrogate series (un-processed large-scale variables, SWG series and the two bias corrected series).

(SI) as similar as possible as when hydro-meteorological observations are used to constrain the model.1

In Fig. 8, the comparison is first carried out in terms of distribution with quantile-quantile plots. On2

the x-axis, the daily evapotranspiration (Fig. 8a) and the water stress index (Fig. 8b) is simulated by3

the SPARSE model when constrained by the observations. On the y-axis of both panels in Fig. 8, the4

simulation is constrained by the surrogate series, i.e. either the un-processed large-scale variable (ERA5),5

see Table 3, or one of the series in projection mode (SWG, univariate and multivariate bias correction6

methods). Regarding daily evapotranspiration in Fig. 8a, the surrogate series yielded comparable results.7

In contrast, for the water stress index in Fig. 8b, the highest values are not well reproduced by the different8

surrogate series. This is especially striking for SI values that are under-estimated (quantile-quantile plots9

under the first bisector) when the SPARSE model is constrained by the un-processed large-scale variables10

(ERA5). However, low extreme values are better reproduced when contrained with the SWG.11

In order to translate differences in distribution as visualized by discrepancies from the first bisector12

in the quantile-quantile plot from Fig. 8b into a more hydrologically interpretable analysis, we propose13

a further comparison based on the probability that the water stress index exceeds a given threshold,14

so-called exceedance probability. In Fig. 9, threshold values are represented on the x-axis, ranging from15

0 to 1. The exceedance probabilities are on the y-axis, in black, as estimated when constraining the16

SPARSE model by hydro-meteorological observations, with an empirical 95% of confidence band in gray.17

The exceedance probabilities estimated when constraining the SPARSE model with a surrogate series,18

either the un-processed large-scale variables (ERA5) from Table 3 or one of the downscaled series (SWG,19

20



(a) Daily evapotranspiration (b) Water stress index

Figure 8: Quantile-quantile plots of the simulations from the dual source energy balance model, see sub-section 3.2,
when constrained by observed series on the x-axis compared to surrogate series on the y-axis, i.e. either the un-
processed large-scale variables (ERA5) or the downscaled series (SWG, univariate and multivariate bias correction
methods in projection mode).

univariate or multivariate bias correction methods), are as indicated in the color legend in Fig. 9. When1

the SPARSE model is constrained by the large-scale variables (ERA5) and by the series generated by2

the bias correction methods, the estimated exceedance probability falls outside the confidence interval3

for low threshold values between 0 and 0.3 for univariate and multivariate bias correction and between 04

and 0.5 for large scale variables. In contrast, when constrained with the projected series from the SWG,5

the estimated exceedance probability is almost always within the confidence interval.6

Figure 9: Estimated exceedance probabilities for increasing threshold values for the water stress index as simulated by
the energy balance model when constrained with the observed series (in black) along with a 95% empirical confidence
band (in gray) and when constrained with the surrogate series (see the color legend). The SWG and the univariate
and multivariate bias correction methods were applied in projection mode.

In Fig. 10, a comparative analysis is carried out at the monthly scale. In Fig. 10a, monthly evap-7

otranspiration average for the agricultural year 2015-2016 is shown when the energy balance model is8

constrained either by hydro-meteorological observations (in blue) or by one of the surrogate series (see9

the color legend). We observe that monthly ET simulations are very similar whatever series is used to10
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constrained the energy balance model. The same observation holds for all the years studied (results not1

shown). Further analyses is gained by looking into monthly ET errors in Fig. 10b that are computed as2

the differences between monthly ET average constrained by meteorological observed series and monthly3

ET average constrained by a surrogate series. Positive (negative) errors indicate over (under) -estimation4

of the observed monthly ET average while values near zero mean a good reconstruction of the observed5

monthly ET average. Errors shown in Fig. 10b vary strongly throughout the year. In summer, errors6

derived from the simulations constrained by series provided by SWG are rather low (< 0.2 mm/day).7

Errors derived from the two bias correction methods are larger, noticeably in april, where we observe8

errors exceeding 0.5 mm/day. Relying on the SWG simulated series to constrain the SPARSE model9

could be very helpful to detect minimal stress events.10

(a) Monthly mean daily ET.

(b) Monthly mean daily ET errors.

Figure 10: Monthly average daily evapotranspiration of available data over the 2015-2016 period when the energy
balance model is constrained with either meteorological observations or one of the surrogate series.

A final analysis is carried out at the monthly scale. Fig 11 presents the temporal variation of the11

stress index simulated from different surrogate series for data available in August 2016. We observe that12

the stress index derived from the series produced by the bias correction methods and the un-processed13

large scale variables tend to be underestimated. In contrast, SI derived from the SWG is rather close to14

the SI obtained when simulated by the hydro-meteorological observations.15

6. Summary and outlook16

In semi-arid areas, actual water use deduced from evapotranspiration and water stress studies are very17

useful to gain greater understanding into the mechanisms leading to droughts. Dual source energy balance18

models such as the SPARSE model [11] can serve to retrieve estimates of evapotranspiration and water19

stress indices. These models rely on satellite information and hydro-meteorological observation series that20

contain almost always missing data for various reasons. In addition, the observation period might be21

too short for the purposes of drought studies. We propose to rely on a multi-variable stochastic weather22
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Figure 11: Temporal variation of water stress index (August 2016) simulated when constraining the energy balance
model either with hydro-meteorological observations or with one of the surrogate series (see color legend).

generator (SWG) to fill in missing data and to provide long time series when necessary. The SWG can1

simulate hydro-meteorological series over any time interval based on previous local hydro-meteorological2

observations and large-scale variables (reanalysis).3

As far as we know, not many multi-variable SWG have been proposed in the literature. We chose4

to adapt the proposal of Chandler [16] as it relies on simple statistical models and mechanisms. The5

adaptation of the SWG required to develop our own R code, which will be made available soon as a package6

MetGen, in order to include modifications accounting for the presence of a diurnal cycle. Although the7

generalized linear models used to model each hydro-meteorological variable are implemented in the base8

package of R, a large amount of time was dedicated to perform model selection and validation. Model9

selection consists in the identification of an adequate dependence graph to account for inter-variable10

dependence, the choice of the probability distribution potentially combined with a transformation for11

each hydro-meteorological variable, the choice of the large-scale variables deduced from ERA5 data and12

the development of a selection procedure to include additional covariates accounting for spatial, temporal13

and memory effects. In particular, for the large-scale covariate choice for atmospheric pressure at the14

stations, we retained mean sea level pressure despite the difference in altitude. This is justified by the fact15

that all statistical downscaling methods - SWG and bias correction - are able to make the appropriate16

corrections (see Fig. 6 and Fig. 4). Moreover, the selection of a second large-scale covariate, total cloud17

cover, in addition to the large-scale global radiation, was decisive to improve the fit for the local-scale18

global radiation. Model validation was performed both in gap filling and projection mode. In both cases,19

the simulation is carried out for each hydro-meteorological variable following the order prescribed by the20

dependence graph, see Fig. 1. Simulation has to proceed one time step at a time in order to update the21

memory effects such as lagged moving averages.22
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The proposed SWG is compared with two state-of-the-art bias correction methods, CDF-t and MBCn,1

that are alternatives to statistically downscale large-scale information provided by the reanalysis vari-2

ables. These bias correction methods are applied to anomalies over the diurnal cycles in order to remove3

systematic components of variability which are thus assumed to be constant over the study period. As, in4

our application, the study period has five years, this assumption is reasonable. In contrast to the SWG,5

the bias correction methods are not stochastic and therefore yield a single surrogate value at each time6

step. The comparison was carried out in projection mode, i.e. when the downscaling approaches, SWG7

and bias correction methods, are used to provide temporal extension of the existing observation series.8

Projection mode is more challenging than gap filling mode since the surrogate series are generated over9

a long period instead of just filling gaps in the observations series. A cross-validation procedure which10

sets one year aside in turn for validation implements the projection mode.11

We consider a wide range of performance criteria to carry out the comparison between the observed12

series and surrogate series, un-processed large-scale variables (without downscaling) or provided by the13

SWG, the univariate or the multivariate bias correction methods. The first set of criteria gathers con-14

ventional criteria that assess by direct comparison how accurately the surrogate series reproduce the15

observed series. The second set of criteria is indirect in the sense that it focuses on the estimated evapo-16

transpiration and water stress index provided by the SPARSE model when it is constrained either by the17

observed series or the surrogate series. Our main findings are as follows, concerning each set of criteria.18

Hydro-meteorological variables are, in general, very well reproduced by the downscaled series (provided19

by the SWG, the univariate or multivariate bias correction methods), see Fig. 6, except for precipitation20

whose higher values are under-estimated by all downscaling approaches, see Fig. 6f. For the two bias21

correction methods, this may be caused by the temporal interpolation step that is performed after bias22

correction. Indeed, as ERA5 reanalysis data are available at hourly time intervals, corrected values are23

linearly interpolated to half-hourly time steps. Although this temporal disagregation step is sensible24

in most cases, it might be that a more refined strategy would be needed for high precipitation values.25

Concerning the SWG, the underestimation of high precipitation values in Fig. 6f is likely caused by the26

choice of the Gamma distribution, see (2). Indeed, the Gamma distribution is light-tailed and is prone27

to under-estimate extreme events. A more flexible distribution, such as the one proposed in Carreau28

& Vrac [14], could be used at the expense of a much more complex statistical model. Inter-variable29

dependence strength, as measured by Kendall’s rank coefficients, is well reproduced by all surrogate30

series, see Fig. 7, even by the one produced by the univariate bias correction method which doesn’t have31

any explicit mechanism to account for inter-variable dependencies. This might be explained by the fact32

that we worked on anomalies and the diurnal cycles of the observations are preserved by construction.33

Regarding the second set of criteria, evapotranspiration and water stress index are globally more34

24



similar in distribution to the observations when the SPARSE model is constrained by the series simulated1

from the SWG, see Fig. 8. This similarity in distribution translates into a more accurate estimation of2

the exceedance probability of the stress index, see Fig. 9. Lastly, monthly mean analyses of the estimated3

daily evapotranspiration show that the surrogate series provided by the SWG leads, overall, to lower4

errors (Fig. 10). As a result, the probability to miss drought events is lessen. This fact is emphasized in5

Fig. 11 where we see that the SWG better reproduce SI obtained when constrained by the observations.6

These analyses give confidence that the combination of the SWG and the SPARSE model yields a reliable7

tool to perform realistic water stress estimation and detection when hydro-meteorological information is8

lacking. Note that this tool relies on open source data (reanalysis and satellite data), that the SPARSE9

model is available on-line (http://tully.ups-tlse.fr/gilles.boulet/sparse) and that the SWG will be made10

available soon as an R package MetGen making the tool applicable, in principle, on any study area.11

The main objective of this work is the adaptation and evaluation of a multi-variable sub-daily SWG12

geared towards an hydrological application. Detailed contributions are (1) the adaptation of the SWG to13

the sub-daily resolution, (2) its application in a semi-arid climate, (3) a comparison with other types of14

downscaling methods conventionally used with global climate model simulations and (4) the use of the15

surrogate series generated from all proposed downscaling methods to constrain the energy balance model16

in order to simulate evapotranspiration and water stress over a long period. Future work will be dedicated17

to develop a spatial extension of the SWG at high resolution in order to estimate water stress over the18

study area at fine spatial and temporal resolutions. Second, daily interpolation of impact variables will19

be performed for cloudy days. Lastly, the SWG-SPARSE tool will be tested for similar applications but20

in different climatic conditions (e.g. coastal area).21
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Appendix A. Surface Energy Balance Model20

SPARSE model is forced by a series of climatic observations composed of global solar radiation (GR),21

air temperature (AirT), relative humidity (Rh) and wind speed (WS). Moreover, the model requires a22

description of initial conditions and characteristics of the surface cover. Thus, we deploy remotely sensed23

data from the latest collection 6 of MODIS, available on (http://earthexplorer.usgs.gov).24

We use the temporal 16-day composite series of MODIS NDVI (MOD13A2), daily Land Surface25

Temperature (LST), surface emissivity and viewing angle from (MOD11A1), and 8-day of albedo series26

(MCD43A3) having a spatial resolution of 500m. These data are acquired for our study period (2012-27

2016), at the resolution of the MODIS sensor at 1 Km. We extracted a sub image covering the whole28

plains. In addition, we performed a temporal interpolation of albedo and NDVI data to have daily infor-29

mation corresponding to the satellite overpass. Then, NDVI informations are used to compute remotely30

30



sensed leaf area index LAI. Other parameters and constants are also necessary as inputs in SPARSE1

model, such us: vegetation height , the roughness length, Minimum stomatal resistance, Atmospheric2

forcing height etc. Inputs used and required in SPARSE model are well described in [44].3

SPARSE outputs are simulated at meteorological time steps (30 minutes in our case). The model4

provides estimates of instantaneous surface fluxes by solving the energy budgets of the soil and the5

vegetation. So that, a system of three main equations should be solved iteratively ;6


Rns = G+Hs+ LEs

Rnv = Hv + LEv

σT 4rad = Ratm−Ras−Rav

Ratm is the atmospheric radiation (W/m2), Ra is the net component longwave radiation (W/m2)7

and Trad is the radiative surface temperature (K) obtained from satellite acquisition; indexes s and v8

designate the soil and the vegetation components of the total fluxes, respectively. The first and the9

second equations represent the energy budget of the soil and the vegetation, and the third reports the10

link between the radiative surface temperature Trad and its two component skin temperature sources11

(Ts and Tv).12

Appendix B. Inter-dependency evaluation13

We use pair-plots with non-parametric rank correlations: Kendalls tau, a correlation analyse measure14

the strength of the relationship between two variables.15

Kendall’s coefficients are under-estimated in a number of cases by the large-scale variables. For16

instance, atmospheric pressure with air temperature (-0.22 instead of -0.13) or wind speed with air17

temperature (0.05 instead of 0.17) and global radiation (0.13 instead of 0.3), see Fig. B.12a and B.12b.18

Except for the first example, the SWG, see Fig. B.12c, yields closer Kendall’s coefficients.19

For example, in observed series, we observe that the rank correlation between the wind speed (WS) and20

the air temperature (AirT) is about 0.17 (figure B.12). It means a positive correlation between these21

variables. Using the weather generator and multivariate bias correction, we succeed to reproduce the22

strength of the relationship between these two variables, less reproduced using the univariate correction23

and inability to preserve this link using reanalysis (Kendalls tau is about 0.05). A negative non linear24

correlation is also observed between the air temperature and global radiation using different sources of25

climatic data.26
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(a) Observations (b) Large scale variables

(c) SWG (d) univ BC (e) multi BC

Figure B.12: Inter-variable dependency
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