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Abstract: Monitoring agricultural crops is of paramount importance for preserving water resources
and increasing water efficiency over semi-arid areas. This can be achieved by modelling the water
resources all along the growing season through the coupled water–surface energy balance. Surface
albedo is a key land surface variable to constrain the surface radiation budget and hence the coupled
water–surface energy balance. In order to capture the hydric status changes over the growing season,
optical remote sensing becomes impractical due to cloud cover in some periods, especially over
irrigated winter crops in semi-arid regions. To fill the gap, this paper aims to generate cloudless
surface albedo product from Sentinel-1 data that offers a source of high spatio-temporal resolution
images. This can help to better capture the vegetation development along the growth season through
the surface radiation budget. Random Forest (RF) algorithm was implemented using Sentinel-1
backscatters as input. The approach was tested over an irrigated semi-arid zone in Morocco, which
is known by its heterogeneity in term of soil conditions and crop types. The obtained results are
evaluated against Landsat-derived albedo with quasi-concurrent Landsat/Sentinel-1 overpasses
(up to one day offset), while a further validation was investigated using in situ field scale albedo
data. The best model-hyperparameters selection was dependent on two validation approaches
(K-fold cross-validation ‘k = 10’, and holdout). The more robust and accurate model parameters are
those that represent the best statistical metrics (root mean square error ‘RMSE’, bias and correlation
coefficient ‘R’). Coefficient values ranging from 0.70 to 0.79 and a RMSE value between 0.0002 and
0.00048 were obtained comparing Landsat and predicted albedo by RF method. The relative error
ratio equals 4.5, which is acceptable to predict surface albedo.

Keywords: surface albedo; random forest; Sentinel-1; crop vegetation; Landsat

1. Introduction

Surface albedo (α), described as the ratio of reflected to incoming (diffuse and direct
fractions) solar irradiance at the surface, is one of the main variables affecting environmen-
tal, biophysical, and plant physiological processes (respiration, photosynthesis, etc.) as
well as Earth’s climate [1,2]. The vegetated land surfaces α is one of the crucial surface
variables that play an important role included in the main processes that drive the surface
energy balance exchanges and biomass growth, counting rain and light interception and
evapotranspiration [3,4].

Surface albedo variation is related to many surface parameters and variables, in-
cluding soil moisture, roughness, soil color, and the fraction of vegetation [5–8]. To help
improve the ability to model the effects of land surface variation and the exchange between
soil-vegetation-atmosphere, a better understanding of α and how it changes with variations
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in these parameters is crucial. Matthias et al. [5] and Potter et al. [9] stated that in a vege-
tated area, soil albedo affects soil temperature variation, which influences soil biophysical
processes, like plant development, seed germination, and root growth. Over bare soil, α
is influenced by soil surface optical properties, solar zenith angle, and soil surface hydric
status (degree of dryness or wetness) [5,10,11]. However, Cresswell et al. [12] stated that
the α variation is generally affected by soil moisture more than surface roughness, which
impacts relatively less on soil albedo variation. In practice, α can be measured based on
ground-based, aircraft, or satellite sensors depending on the application level [13–17]. How-
ever, these numerous measurements have shown that α shows large seasonal and spatial
variations [18,19]. On a local scale, α can be measured directly from in situ observations by
albedometers, or using two back-to-back identical pyranometers [16,20,21] or through a go-
niometric system providing many directional surface reflectance observations [22]. Despite
the direct measurements of α, a limited scale can be observed and only a few surfaces can
be characterized. Other limitations are related to economic and technological constraints
as well as direct measurements are time consuming [18]. On a spatial scale, α derived
from ground-based observations is not valid for other sites due to the spatial and temporal
variations associated with surface properties of other external factors affecting α such as
snow cover [23], altitude (relief) [24], soil moisture [21,25,26], and seasonal variation of
vegetation characteristics. Therefore, accurate estimates of α over each field are known
as becoming progressively significant in many respects. In this regard, remote sensing as
a promising technic to retrieve α in different spatial scales proved its applicability and
accuracy for a varied range of surface land cover types. Several previous studies have
focused on estimating α from satellite observations based on radiative transfer model
inversion and have been devoted to deriving regional α from satellite sensed information,
like the Moderate Resolution Imaging Spectroradiometer (MODIS) [27–31], Advanced Very
High Resolution Radiometer (AVHRR) [32], POLarization and Directionality of the Earth’s
Reflectances (POLDER) [33], Multi-angle Imaging Spectroradiometer (MISR) [30], Meteosat-
EUMETSAT [34], and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) [35].
Wang et al. [27] have proved that MODIS-based albedo and in situ observations are in
accordance and agree well over different land surface types. Moreover, other works have
also validated global albedo derived from satellites against ground-based measurements
over several land covers [27,36–40]. However, α products are available at a kilometric
and sub-kilometric resolution (500m) every 16 and even 8 days’ time scale, which makes
their application over agriculture areas and individual small land areas limited [41]. In
this context, high spatio-temporal resolution offered by many sensors, such as Sentinel 2,
Landsat, and FORMOSAT-2 sensors, could fill the gap [42]. Bsaibes et al. [43] have used
FORMOSAT-2 near infrared and red reflectances to retrieve solar albedo based on empirical
approaches using continuous in situ observations over some different fields. In the same
vein, other research used reflectance bands in green, red, and near infrared [42,44,45].

The above techniques are based on unidirectional surface reflectance, where they
consider the surface as a Lambertian, therefore considering α equivalent to surface re-
flectance [46–50]. Other works were focused on driven α based on surface reflectance
derived in diverse angular observations acquired from airborne data [51]. These works are
based on the fact that surface reflectance is highly anisotropic, where a lot of numbers of
angular measurements are necessary to derive α overall views and illumination angles,
incorporating the bidirectional reflectance distribution function [31,51–55]. However, re-
trieving surface albedo at a daily scale remains a challenging issue, due to its complexity
and difficulty of implementation. In addition, optical data requires many cloudless images
of the surface during the investigated time every day [56–59]. Promising tools like machine
learning approaches have demonstrated their ability to retrieve many environmental vari-
ables and solve complex non-linear problems. Machine learning approaches were used for
monitoring a normalized difference vegetation index using Sentinel-1 data [60], while other
works used machine leaning approaches for spatial downscaling of land surface tempera-
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ture [61,62], mapping soil moisture [63,64], gap-filling of high-resolution soil moisture [65],
evapotranspiration [66], and crop yield forecasting [67].

Even though many authors widely used the above-mentioned remote sensing al-
gorithms and methodologies to retrieve surface albedo, cloud cover remains the main
limitation and challenge to monitor environmental variables, where the optical remote
sensing-based methods are promising in regions with infrequent cloud conditions. This
issue affects the temporal resolution and makes monitoring α continuously unsuitable for
an operational standpoint. To fill the gap, radar sensors give the opportunity to monitor
surface variables in any conditions since they are not affected by clouds [68]. Thus, the
aim of this work is to retrieve α independently of cloud cover (cloudless albedo product)
for agricultural applications using cloud-free Sentinel-1 data. The idea is to model the α

based on the Sentinel-1 backscatter coefficient with random forest regression technique.
The presented research paper differs from the past studies, where the used approach here
will allow for retrieving α independently from optical data. Nevertheless, retrieving α

from radar and optical data such as Landsat could also be coupled, providing a continuous
albedo product with a high frequency. In addition, this study uses radar images (Sentinel-1)
to derive the crop albedo with high resolution although the presence of clouds.

2. Materials and Methods
2.1. Study Site

The study was investigated in a semi-arid zone in Morocco over the Tensift region.
This area is located in North Africa especially in the center of Morocco (Figure 1). It
occupies about 24,000 km2, which corresponds to 4.4% of the Moroccan domain. This
zone is known for a different topography (landform) with a wide altitude range. This
area received an amount of 250 mm/year of rainfall against 1600 mm/year of reference
evapotranspiration (ET0). This pushed farmers to an overexploitation of water resources
through irrigation to overcome the crop water needs. The investigated area is known by
different altitudes, from 575 m to 927 m (Figure 1). The area is known for its heterogeneity
in terms of land covers like wheat, olive, alfalfa, and horticulture, including an irrigated
perimeter called R3 where 50% of this area is occupied by wheat crops. The selected
area is considered as a well-known area and it has been extensively utilized as a typical
agricultural area since 2002 [69–80]. Two experimental wheat sites were made in the R3
perimeter during the 2015/2016 agricultural season: a 4-ha flood-irrigated field (P1) and a
2-ha drip-irrigated field (P2). The two irrigated wheat sites were permanently monitored
over the season (Figure 1).

2.2. Data Description and Processing
2.2.1. In Situ Albedo Measurements

Both monitored sites were equipped with two eddy covariance (EC) systems providing
energy flux measurements. Net radiometer Kipp and Zonen CNR4 sensors were installed
in the tower, providing net radiation (Rn) measurements and incoming and outgoing short-
wave components. The incoming and the outgoing short-wave components were used to
calculate the daily ground-based albedo at the Landsat overpass satellite (~11 a.m.) due to
the fact that Landsat data were used as reference data to validate the predicted albedo.

2.2.2. Landsat

Landsat 7 (L-7) and Landsat 8 (L-8) satellites were launched in April 1999 and February 2013
by the National Aeronautics and Space Administration (NASA), respectively. The images
were acquired freely from the United States Geological Survey (USGS) Earth Explorer
(URL: https://earthexplorer.usgs.gov/) website (accessed on 7 August 2021).

https://earthexplorer.usgs.gov/
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Figure 1. The study sites’ locations and both wheat fields (black dots) equipped with the eddy
covariance systems in the Tensift basin in Marrakech, Morocco.

L-8 (L-7) images the land surface at eleven (eight) spectral bands in the optical and
thermal infrared domains. The spatial resolution ranged from 30 m to 100 m with a revisit
time of 16 days. By using both sensors, this allows acquiring data with a frequency of
8 days. Six L-7 and eight L-8 cloud-free level-1 images were available in the 2015–2016
wheat growing season (14 images in total), which were acquired at 11:30 a.m. Note that
Landsat data were used as reference data to validate the random forest albedo predictions.

In this study, for the optical data, the top-of-atmosphere (TOA) reflectance values
were corrected for atmospheric effects, including environmental effects to get the surface
reflectance. Then, corrected reflectances were projected into WGS84 UTM Zones 29 North.
Reflectance at the red (RED) and near infrared (NIR) bands were used to compute the
surface albedo (α) by weighting the RED and NIR reflectances with the coefficients given
by Weiss et al. [42] and this was validated in Bsaibes et al. [43]. This equation was used
and validated over several sites [81,82].

α = 0.6 RED + 0.4 NIR (1)

To assess the reliability of α derived from L7/L8, the corresponding pixels of Landsat
α were compared against in situ α for each site. The comparison is presented in Figure 2
for both monitored sites in the R3 irrigated perimeter for all of the year 2016 (January
to December).

From Figure 2, a very good agreement is noticed between ground-based and satellite-
derived α with a determination coefficient (R2) of 0.73 and 0.81 with a root mean square
error (RMSE) equal to 0.021 and 0.023 for the flood-irrigated site (P1) using L-7 and L-8,
respectively. For the drip-irrigated site, an R2 reach 0.92 and 0.89 with an RMSE equal to
0.031 and 0.039 using L-7 and L-8, respectively. The shortage of spatial representativeness of
in situ data at the L-7 and L-8 pixel scales explains the small errors and slight overestimation.
In addition, the in situ measurements of α are performed over a limited and tiny portion
of the target. The covered in situ area corresponds to a small area within Landsat pixel.
Finally, each crop field might include a combination of wet and dry Landsat pixels. At the
field scale, a linear average of all pixel values was calculated.
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wheat sites.

2.2.3. Sentinel-1

ESA Sentinel-1 (S-1) mission is composed of a constellation of two identical satel-
lites: the S-1A, which was launched in April 2014, and the S-1B, which was launched in
April 2016, in the frame of the Copernicus program. S-1 data were acquired for free from
the S-1 Data Hub website (https://scihub.copernicus.eu/) (accessed on 7 August 2021).
Both sensors orbit at an altitude of ~700 km in the same orbital plane with a phase shift
of 180◦. S-1 twins operate at a frequency of 5.33 GHz, which corresponds to wavelength
of 5.6 cm. This frequency lies down in C-band synthetic aperture radar. Four operational
modes (Wave, Extra Wide Swath, Interferometric Wide Swath, and Strip Map) with differ-
ent polarizations are provided by S-1 sensors. The data were acquired with a high temporal
resolution that could go up to 3–6 days by using S-1A and S-1B. In the interferometric Wide
Swath mode, S-1 provides data at cross-polarization VH and co-polarization VV mode
where V and H stand for vertical-horizontal, respectively. The native resolution of S-1 data
is 10 m with an incidence angle around 40◦ for the ascending and descending overpasses
over the investigated area.

The S-1 signal underwent several corrections to convert raw intensity to a backscatter-
ing coefficient using the Sentinel Application Platform (SNAP). The first step is to remove
thermal noise from the power-detected images by removing additive noise. After that, ra-
diometric calibration was applied to obtain a backscattered signal called the backscattering
coefficient which expresses in general in decibel (dB). Then applying geometric corrections
to correct for geometric distortions and deformations related to the satellite view mode,
using a Digital Elevation Model (DEM-SRTM). Finally, a refined Lee speckle filter was
adopted to reduce speckle effects in the images.

2.3. Method: Regression Algorithms and Approaches Used in Albedo Modeling

The random forest (RF) model is a machine learning model that has been widely
utilized for solving classification and regression problems [83]. RF model is a non-linear
regressor that functions by constructing an assembly of decision trees (multiple weak
classifiers) at the training step and providing in output mean prediction (regression) of
individual trees or classes for regression or classification problems, respectively [83]. The
RF algorithm has many advantages in the regression tasks such as simplicity and flexibility
where the affection is lower than other models by hyper-parameters. The decorrelated,
adaptive, and randomized features make RF appropriate for non-linear relationships and
complex algorithms.

Because the RF algorithm is non-parametric, more related input variables can be
included. Further, it is not sensitive to outliers and performs well in the training stage
when it comes to randomizing samples and variables. In this paper, the central idea of

https://scihub.copernicus.eu/
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the RF model is to create a nonlinear function to estimate α based on regression trees
as follows:

α =
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(σVV , σVH , DEP, DEM, SkyView, Hillshade) (2)
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is a nonlinear function that relates input variables to output α by a nonlinear
relationship. σVV and σVH are the backscatter VV and VH polarization, respectively. DEP
is the depolarization ratio which is calculated as σVV/σVH . DEM (m) is the digital elevation
model. The hillshade and sky view (the percentage of the sky visible from each pixel)
are computed based on DEM. According to Ayoubi et al. [84], the obtained images were
divided randomly into two group of pixels: training (75%) and validation (25%). The
RF models were evaluated at 100 m resolution in this study using one agriculture season
(2015–2016) of available overlapping Landsat and Sentinel-1 data throughout the whole
study area. In order to provide one image for each step of wheat growth, three dates
were chosen based on the wheat growth stages including the initial, the development-mid-
season, the late season, and one day after harvest (by August). In the training procedure,
45,750 points were used and a 10-fold cross-validation method was set up to adjust RF
parameters in order to ensure the generalizability and robustness of the RF models. The
pixels samples were divided into ten portions at random, with nine serving as the training
dataset and the remaining serving as the testing dataset. In this work, the k value was set
as 10. The developed approach was applied over an irrigated perimeter R3.

A grid-search optimization method [63,85] was adopted to optimize the most relevant
hyper-parameters in RF model. The most important parameters in RF that have been
optimized in order to achieve better prediction results are the maximum characteristic
number that determines node splitting among different decision trees (max features), the
maximum depth of a decision tree (max depth), and the number of decision trees (m).
The optimized max_features, max_depth, and m values were equal to 2, 500, and 100,
respectively. Figure 3 presents the flowchart of the investigated approach.
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The approach to estimate α from radar data was compared against the α estimated
from Landsat data using the correlation coefficient (R), bias (MBE), and root mean square
error (RMSE). The calculation formulas for R, bias, and RMSE are as follows:

R =
(∑n

i=1
(
Ii − I

)(
Ei − E

)
∑n

i=1
(
Ii − I

)2
∑n

i=1
(
Ei − E

)2 (3)

MAE =
1
n

n

∑
i=1
|Ei − Ii| (4)

RMSE =
1
n

√
n

∑
i=1

(Ei − Ii)
2 (5)

where Ei is the estimated value by random forest algorithm; Ii is the reference value of
albedo (obtained from Landsat); I and E are the means of observed and reference albedo; n
denotes the image’s pixel number.

3. Results and Discussions

The albedo prediction results are not only influenced by the model parameters but
also by the different combinations of input data, so it is crucial to further analyze the effect
of each variable on the α prediction results. Each possible combination is composed of
σVV , σVH , DEM, sky view, and hillshade to retrieve α. It is required to limit the number of
input features to both decrease the computing cost of modeling and, in some situations,
increase the model’s performance. For this reason, a feature selection was performed
to limit the number of input variables when developing the albedo predictive model.
This statistical-based feature selection method uses statistics parameters to evaluate the
relationship between surface albedo and input variables. This allows selecting the input
variables that show a strong relationship with the output variable. Figure 4 presents a
correlation matrix with the relationship between albedo and other input variables utilizing
Pearson correlation using feature selection method. Figure 4 also shows the correlations of
the independent variables with albedo, with the goal of displaying the quantitative links
between these variables.

From the feature selection method, it is clear that σVV , σVH , and DEP are the most
relevant variables affecting the α with a correlation coefficient of −0.66, −0.59, and 0.49,
respectively. The fact that the correlation is higher between albedo and backscatter coef-
ficients is due to the fact that the variability of α is due to the changeability of the land
surface type (bare soil, green vegetation, and senescent vegetation); surface color which
depends on soil moisture (surface soil color and crop); and soil proprieties. The only means
to assess soil moisture variation in bare soil is to observe and interpret changes in soil color,
with dry soil appearing brighter than wet soil. In the case of vegetated areas, changes in
vegetation water content or color are reflected in albedo observations since the C-band
radar signal is sensible to vegetation water content. The reason for the C-sensitivity band’s
response to variations in albedo can be explained in this way.

In order to visualize the correlation between albedo and other independent variables,
Figure 5 shows a visualization of the images selected using feature selection to train the
model. This set consists of the backscatter coefficients in the different polarizations of
Sentinel-1 (σVV , σVH) and the depolarization ratio σVV/ σVH . By analyzing Figure 5, it
seems visually that the relationship between the backscatter coefficients and albedo is
remarkable. The albedo variability can be observed solely by looking at the dynamics of
the backscatter coefficients’ values, σVV , σVH , and σVV/ σVH , and this is confirmed when
looking to the correlation coefficient values reported in Figure 4.
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Figure 7 presents albedo estimates captured all along the investigated period from
RF-based Sentinel-1 retrievals. The radar-based albedo images are obtained across the
season for four clear-sky selected dates over the irrigated perimeter R3. The k-fold cross-
validation results using the training set with a set number (k) equal to 10 were used to
predict the surface albedo while the cross-validation is necessary to verify the modeling’s
resilience, which is evident in all of the RF approach’s results due to their low variability,
as seen in Figure 7.

From Figure 7, the spatial heterogeneity in soil properties (type, dry, or humid) and
land cover over the investigated area generates strong variations in surface albedo at high
resolution. Here, we test if the RF model can capture surface albedo variability over the
complex area. The highest value of albedo (0.4) was obtained on the 30th of June, which
corresponds to senescent vegetation albedo [86]. To better interpret the results and define
the variable driven by the albedo variability over the irrigated perimeter R3 and along
the season, Figure 8 presents the RF input variable importance to predict surface albedo
for each date. From Figure 8, at the initial stage of wheat crop growth (1 June 2016), the
spatial variation of surface albedo is driven by VV polarization. This is due to the small
portion of the surface covered by the crops, where VV polarization is sensitive to soil
moisture at the surface changes as reported by Amazirh et al. [78]. In the development
stage (7 February 2016), some fields have achieved effective complete cover, while others
have a low fraction of green vegetation, depending on the planting date and vegetation
development. This variation in VH polarization has a direct impact on the variation in
surface albedo, which is highly influenced by the geometrical arrangement and shape of the
vegetation [78,80,87–90]. In the vegetated area (especially at the center of the image), when
the VH value is high, the surface albedo becomes smaller and vice versa. Note that the
harvest date for winter wheat crop in the studied area is at the end of June. On 17 August
2016, the fields are in bare soil conditions, which are characterized by a low vegetation.
Moreover, the surface albedo is driven by soil moisture variability, where VV polarization
is sensible to soil moisture variability. When soil moisture is important on the surface,
surface albedo decreases, which is similar with the findings of Cresswell et al. [12] and
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Idso et al. [10], who found a drop in surface albedo as surface soil moisture increased. Light
scattering in the direction of the incident radiation and absorption of more incident photons
are caused by a reduction in the relative refractive index of wet soil, resulting in a low albedo
value [7,91]. This is due both to water content at the surface and surface roughness. Albedo
is largely dependent on surface roughness over bare soil, especially in dry conditions,
where surface roughness causes a drop in surface albedo, as illustrated in [92].
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Figure 6. Comparison between predicted and Landsat estimates’ surface albedo for training and validation dataset.

Using the 100 m Landsat albedo images as a reference, the retrieval results are visually
and quantitatively analyzed in Figures 6 and 7. Results statistics are also reported and
listed in Table 1, showing that the RF algorithm performs well for all of the dates and
delivers accurate and stable results over the R3 agriculture site. The R value ranges from
0.70 to 0.79 for the validation step with a RMSE between 0.00021 and 0.00048. The highest
R of 0.79 was obtained on 7 February 2016.

A further evaluation of the predicted α by RF technique was performed by comparing
in situ and predicted albedo at the field level. In situ data were selected at Landsat overpass
satellite over P1 and P2 fields (Figure 9). Since our objective is to asses wheat albedo, four
dates were used for each field which correspond to the wheat phenological growth stages.
From the plots, it can be observed that the RF technique allows the prediction of surface
albedo correctly with very good accuracy and correlation. The RF method permits the
retrieval of the temporal dynamics of α all over the season over the two fields with an R2

of 0.97 and 0.98 over P2 and P1 sites, respectively. The reached RMSE for both sites is equal
to 0.04 with a linear regression slope of 0.83 and 1.12 for P2 and P1 sites, respectively. By
combing both sets of data from the two fields, a very good correlation was also obtained
with a RMSE equal to 0.04 with an R2 reaches 0.96.



Remote Sens. 2021, 13, 3181 11 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 7. Maps of the surface albedo by random forest algorithm compared to the Landsat reference albedo imagery on 
the four cloudless dates over R3 area. NDVI maps were also presented. 

From Figure 7, the spatial heterogeneity in soil properties (type, dry, or humid) and 
land cover over the investigated area generates strong variations in surface albedo at high 
resolution. Here, we test if the RF model can capture surface albedo variability over the 
complex area. The highest value of albedo (0.4) was obtained on the 30th of June, which 
corresponds to senescent vegetation albedo [86]. To better interpret the results and define 
the variable driven by the albedo variability over the irrigated perimeter R3 and along the 
season, Figure 8 presents the RF input variable importance to predict surface albedo for 
each date. From Figure 8, at the initial stage of wheat crop growth (01/06/2016), the spatial 
variation of surface albedo is driven by VV polarization. This is due to the small portion 
of the surface covered by the crops, where VV polarization is sensitive to soil moisture at 
the surface changes as reported by Amazirh et al. [78]. In the development stage (7 Feb-
ruary 2016), some fields have achieved effective complete cover, while others have a low 
fraction of green vegetation, depending on the planting date and vegetation development. 
This variation in VH polarization has a direct impact on the variation in surface albedo, 
which is highly influenced by the geometrical arrangement and shape of the vegetation 
[78,80,87–90]. In the vegetated area (especially at the center of the image), when the VH 
value is high, the surface albedo becomes smaller and vice versa. Note that the harvest 
date for winter wheat crop in the studied area is at the end of June. On 17 August 2016, 

Figure 7. Maps of the surface albedo by random forest algorithm compared to the Landsat reference albedo imagery on the four
cloudless dates over R3 area. NDVI maps were also presented.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

the fields are in bare soil conditions, which are characterized by a low vegetation. Moreo-
ver, the surface albedo is driven by soil moisture variability, where VV polarization is 
sensible to soil moisture variability. When soil moisture is important on the surface, sur-
face albedo decreases, which is similar with the findings of Cresswell et al. [12] and Idso 
et al. [10], who found a drop in surface albedo as surface soil moisture increased. Light 
scattering in the direction of the incident radiation and absorption of more incident pho-
tons are caused by a reduction in the relative refractive index of wet soil, resulting in a 
low albedo value [7,91]. This is due both to water content at the surface and surface rough-
ness. Albedo is largely dependent on surface roughness over bare soil, especially in dry 
conditions, where surface roughness causes a drop in surface albedo, as illustrated in [92]. 

 
Figure 8. Feature importance for albedo estimation using the random forest algorithm for each date. 

A further evaluation of the predicted α by RF technique was performed by compar-
ing in situ and predicted albedo at the field level. In situ data were selected at Landsat 
overpass satellite over P1 and P2 fields (Figure 9). Since our objective is to asses wheat 
albedo, four dates were used for each field which correspond to the wheat phenological 
growth stages. From the plots, it can be observed that the RF technique allows the predic-
tion of surface albedo correctly with very good accuracy and correlation. The RF method 
permits the retrieval of the temporal dynamics of α all over the season over the two fields 
with an R2 of 0.97 and 0.98 over P2 and P1 sites, respectively. The reached RMSE for both 
sites is equal to 0.04 with a linear regression slope of 0.83 and 1.12 for P2 and P1 sites, 
respectively. By combing both sets of data from the two fields, a very good correlation 
was also obtained with a RMSE equal to 0.04 with an R2 reaches 0.96. 

The relative error ratio (RER, ratio between range and RMSE) was also calculated to 
show how the RF predictions are good independently of the albedo range and to test the 
applicability and practical utility of the RF model. In Figure 9, the RMSE equals 0.004 
within a range of 0.18 (maximum value minus minimum value); therefore, RER is equal 
to 4.5 which shows an acceptable performance, especially in remote sensing applications. 

Figure 8. Feature importance for albedo estimation using the random forest algorithm for each date.



Remote Sens. 2021, 13, 3181 12 of 17

Table 1. Summary statistics of the prediction algorithms.

Dates
Statistical Metrics

Training Validation
R (R2) RMSE MAE R (R2) RMSE MAE

01/06/2016 0.97 (0.94) 0.00006 0.01 0.78 (0.61) 0.00042 0.02
02/07/2016 0.97 (0.94) 0.00005 0.01 0.79 (0.62) 0.00039 0.02
06/30/2016 0.97 (0.94) 0.00007 0.01 0.70 (0.50) 0.00048 0.02
08/17/2016 0.97 (0.94) 0.00003 0.00 0.76 (0.58) 0.00021 0.01
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The relative error ratio (RER, ratio between range and RMSE) was also calculated
to show how the RF predictions are good independently of the albedo range and to test
the applicability and practical utility of the RF model. In Figure 9, the RMSE equals 0.004
within a range of 0.18 (maximum value minus minimum value); therefore, RER is equal to
4.5 which shows an acceptable performance, especially in remote sensing applications.

4. Conclusions

The investigated work confirmed that it is possible to accurately retrieve surface
albedo from radar C-band data, along with the regression approach. Sentinel-1 radar data
were used to simulate the surface albedo of agricultural crops during their growth stage,
and the results were quite accurate. The methodology is based on the correlation of VV and
VH polarization backscatter coefficients with the albedo of agricultural crops. The method
described in this research demonstrates the utility of radar Sentinel-1 data for continuous
agriculture monitoring in areas with frequent cloud cover. The random forest approach
was applied over an irrigated perimeter in central Morocco and evaluated against Landsat
albedo estimates. The Landsat-derived albedo was also compared to in situ albedo in two
experimental fields sited in the 2015–2016 crop growing season.
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The comparison results based on statistical measures show that the random forest
approach achieves very good albedo modeling performance. For the in situ evaluation, the
determination coefficient (R2) between Landsat-derived and in situ albedo achieved 0.81
and 0.92 for drip- and flood-irrigated wheat, respectively. The founded results illustrate
that the RF algorithm presented a very good performance for different growing stage
periods. For the spatial evaluation, a root mean square error (RMSE) between 0.00021 and
0.00048 was achieved between predicted and Landsat-derived albedo with a R value that
lies between 0.7 and 0.79 (R2 between 0.5 and 0.62). Those results are very encouraging as
they open the path for monitoring of agricultural crops continuously every 3–6 days during
any weather situation, taking the advantage of the high frequency of Sentinel-1 images.

The study was done over an irrigated perimeter to retrieve crop albedo. Future
research should be carried out over an extended area. This study opens a path for spa-
tialization of surface albedo over various crop types in order to provide albedo products
all over the world. Additionally, mountain areas are the most affected places by clouds;
extending the application of random forest into those regions would be very interesting
and of a benefit to retrieve albedo in mountains. The estimate of surface albedo using radar
data allows for improving the estimates of evapotranspiration (by an energy balance model,
for example), instead of deriving the albedo from optical reflectance using empirical rela-
tionships. In this work, a random method to split data was used; nonrandom approaches
such as (e.g., Kennard-stone, SELECT, principal component decomposition, etc.) could
be used to improve our model by taking into account the maximum amount of spectral
variability in the calibration dataset to develop a more robust and stable model.
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