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One of the objectives of many studies conducted by breeding programs is to
characterize and select rootstocks well-adapted to drought conditions. In recent years,
�eld high-throughput phenotyping methods have been developed to characterize plant
traits and to identify the most water use ef�cient varieties and rootstocks. However, none
of these studies have been able to quantify the behavior of crop evapotranspiration
in almond rootstocks under different water regimes. In this study, remote sensing
phenotyping methods were used to assess the evapotranspiration of almond cv.
“Marinada” grafted onto a rootstock collection. In particular, the two-source energy
balance and Shuttleworth and Wallace models were used to, respectively, estimate
the actual and potential evapotranspiration of almonds grafted onto 10 rootstock under
three different irrigation treatments. For this purpose, three �ights were conducted during
the 2018 and 2019 growing seasons with an aircraft equipped with a thermal and
multispectral camera. Stem water potential (9 stem) was also measured concomitant
to image acquisition. Biophysical traits of the vegetation were �rstly assessed through
photogrammetry techniques, spectral vegetation indices and the radiative transfer
model PROSAIL. The estimates of canopy height, leaf area index and daily fraction of
intercepted radiation had root mean square errors of 0.57 m, 0.24 m m� 1 and 0.07%,
respectively. Findings of this study showed signi�cant differences between rootstocks
in all of the evaluated parameters. CadamanR
 and GarnemR
 had the highest canopy
vigor traits, evapotranspiration,9 stem and kernel yield. In contrast, RootpacR
 20 and
RootpacR
 R had the lowest values of the same parameters, suggesting that this was
due to an incompatibility between plum-almond species or to a lower water absorption
capability of the rooting system. Among the rootstocks with medium canopy vigor,
Adesoto and IRTA 1 had a lower evapotranspiration than RootpacR
 40 and IshtaraR
 .
Water productivity (WP) (kg kernel/mm water evapotranspired) tended to decrease with
9 stem, mainly in 2018. CadamanR
 and GarnemR
 had the highest WP, followed by INRA
GF-677, IRTA 1, IRTA 2, and RootpacR
 40. Despite the low 9 stem of RootpacR
 R, the
WP of this rootstock was also high.
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INTRODUCTION

The study of the behavior ofPrunuscultivars grafted on di�erent
rootstocks in fruit production serves to adapt cultivars to
di�erent edaphic and environmental conditions and to enhance
sustainable crop production. The selection of a suitable scion-
rootstock combination is the �rst step to monitor the vegetative
growth, yield and fruit composition parameters of the scion
(Caruso et al., 1996; Mestre et al., 2017; Font i Forcada et al.,
2020; Reig et al., 2020). There is growing interest in selecting
and breeding new rootstocks and cultivars with a higher water
use e�ciency (WUE) in order to improve water productivity
and better adapt fruit production to future climate changes
(Solari et al., 2006; Xiloyannis et al., 2007; Díez-Palet et al.,
2019). In almonds [Prunus dulcis(Mill.) DA Webb], with the
recent introduction of high-density planting systems, particular
attention has been paid to using dwarf rootstocks in order
to control canopy vigor and facilitate mechanical harvesting
(Pinochet, 2009; Casanova-Gascón et al., 2019). In addition, with
the introduction of new dwar�ng rootstocks and hybrids coming
mainly from the peach sector, the paradigm has changed since
information about their response to drought or a limited water
supply is scant.

For many years, breeding programs for fruit crop rootstocks,
as well as for obtaining scion cultivars, have used similar
evaluation methods based on both agronomic and molecular
traits. Some of the commonly measured agronomic traits are
trunk cross-sectional area (TCSA), plant height, tree canopy
vigor, phenology, yield parameters, and fruit quality attributes
(Reighard et al., 2011; Font i Forcada et al., 2012; Legua et al.,
2012; Lordan et al., 2019). However, most of these agronomic
traits are a consequence of di�erences in the root system
architecture or the hydraulic properties of a rootstock, which
contribute in in�uencing the transpiration rate through their
e�ects on the stem water potential (9 stem) and the control of
stomatal conductance (Hernandez-Santana et al., 2016). On the
other hand, the development of markers to help select individuals
with traits that are complex to evaluate should speed up the
development of new rootstocks that are resistant or tolerant to
multiple biotic or abiotic stresses (Cantini et al., 2001; Arismendi
et al., 2012; Jiménez et al., 2013; Guajardo et al., 2015). However,
the types of methodology required for this remain fairly time-
consuming, costly and, in some cases, are still scarce.

In recent years, proximal and remote sensing (RS)
technologies have increasingly been used to assess vegetation
in the context of �eld-based phenotyping (FBP) (Deery et al.,
2014; Araus and Kefauver, 2018). These technologies have shown
the potential to reduce labor requirements in the assessment of
“breeder-preferred” traits and, in some cases, can deliver more
detailed information about the biophysical crop parameters.
Usually, most e�orts in this �eld are focused on using low-cost
RGB (visible), multispectral/hyperspectral, light detection and
ranging (LIDAR) or thermal infrared imaging sensors. Detailed
information can be found in the literature about di�erent
applications for �eld phenotyping using these sensors (Araus and
Cairns, 2014; Deery et al., 2014; Araus et al., 2018). For example,
applications of digital RGB sensors in FBP include visible

imaging to estimate leaf color, crop ear counting, canopy cover,
or canopy height (Kefauver et al., 2015; Holman et al., 2016;
Fernandez-Gallego et al., 2019). Spectral imaging sensors are
normally used to derive the spectral response of the vegetation
and their biophysical traits such as leaf water content, chlorophyll
and xanthophyll levels, biomass or the leaf area index (LAI) (Li
et al., 2014; Mazis et al., 2020). Thermal imaging has been used
to estimate plant water status (Romano et al., 2011; Prashar and
Jones, 2014), and LIDAR point clouds to estimate vegetation
structural parameters (Madec et al., 2017; Jimenez-Berni et al.,
2018). However, most of the breeding programs focused on these
targets have tended to use RS technologies to phenotype annual
crops. Such studies are rarely performed in woody crops. To
the best of our knowledge, onlyVirlet et al. (2014); Ampatzidis
et al. (2019); Coupel-Ledru et al. (2019); Gutiérrez-Gordillo et al.
(2020), andLópez-Granados et al. (2019)have used RS imagery
for FBP in woody crops such as apple, citrus and almond.

As previously mentioned, there is an urgent need to identify
rootstocks with improved WUE, which, for instance, could
be planted in drylands or to cope with scarce water supplies.
For this purpose, it is critical to develop tools capable of
determining actual transpiration rates at canopy level which
can be widely used in breeding programs. Until now, the �eld
phenotyping response of woody crops to water use constraints
has constituted a bottleneck for breeding programs due to the
complexity of measuring actual transpiration or water status in
a large number of trees (Virlet et al., 2014). The few studies
that have been published were conducted using high-throughput
phenotyping platforms deployed in greenhouses and under
controlled conditions, which have the advantage that plants
in pots can be weighed and biomass estimated from imagery
(Pereyra-Irujo et al., 2012; Lopez et al., 2015).

In recent years, improvements in computational performance,
open-source programming languages, lower data requirements,
and the simpli�cation of di�erent complex approaches used to
estimate actual crop evapotranspiration (ETa) through RS have
contributed, at least in part, to reducing the existing gap between
RS physical modeling methods and agricultural applications.
Among the di�erent methods, the surface energy balance (SEB)
models are probably the most complex to run, but at the same
time provide high accuracy and robustness in estimating ETa in
di�erent environments (Norman et al., 1995; Bastiaanssen et al.,
1998; Mecikalski et al., 1999; Allen et al., 2007; Boulet et al., 2015).
These models have mostly been used for assessing the spatial
and temporal variability of ETa at regional and �eld scale using
satellite imagery (Semmens et al., 2016; He et al., 2017; Knipper
et al., 2019), although some of them have also been used with very
high-resolution aircraft imagery (Ho�man et al., 2016; Xia et al.,
2016; Nieto et al., 2019). Among the di�erent SEB models, the
two-source energy balance (TSEB) modeling scheme allows the
possibility to estimate transpiration and evaporation separately
(Norman et al., 1995), by using the Priestley-Taylor approach
(Priestley and Taylor, 1972) when radiometric temperature (Trad)
is obtained from satellite imagery (e.g.,Knipper et al., 2019),
or through a contextual approach if high-resolution thermal
imagery is available, in which case it is possible to directly obtain
soil (Ts) and canopy (Tc) surface temperatures (Nieto et al., 2019).
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The TSEB is a two-source model built on the Shuttleworth-
Wallace (S-W) energy combination model which can be used
to estimate potential evapotranspiration (ETp) and its partition
components separately (Shuttleworth and Wallace, 1985).

Based on the hypothesis that the ratio between ETa and
ETp can be used as a crop water stress indicator, this paper
aims to demonstrate the potential of the TSEB and S-W
models for phenotyping and breeding purposes in woody crops.
Di�erences in the amount of evapotranspired water and water
status will be explored in the almond cultivar “Marinada” grafted
onto a collection of 10 rootstocks irrigated under di�erent
water regimes. Di�erent RS approaches to determine certain
biophysical traits of the vegetation are also explored and the
values obtained are used as inputs of the TSEB and S-W models.

MATERIALS AND METHODS

Study Site and Experimental Design
The study was carried out in an experimental almond orchard
located at the experimental station of IRTA (Institute of Research
and Technology, Food and Agriculture) in Les Borges Blanques,
Spain (41� 30031.8900N; 0� 51010.7000E, 323 m elevation) during the
2018 and 2019 growing seasons (Figure 1). The climate in the
area is Mediterranean, with annual rainfall of 535 and 377 mm
for 2018 and 2019, respectively. The orchard is the result of a
rootstock trial planted in 2010 which used cv. “Marinada” as the
scion cultivar (Vargas et al., 2008) and the following rootstocks:
Adesoto, CadamanR
 , GarnemR
 , INRA GF-677, IRTA 1, IRTA 2,
IshtaraR
 , RootpacR
 R, RootpacR
 40, and RootpacR
 20 (Table 1).
Trees were planted at a spacing distance of 4.5 m with 5.0 m
between rows, and trained to an open vase system.

The study followed a split-plot design, where irrigation
treatment is the main plot and the rootstocks are the sub-
plots. The trial consisted of three irrigation treatments: (i)
conventional irrigation (I100), receiving 100% of ETc during the

whole irrigation season; (ii) half irrigation (I50), receiving 50% of
ETc during the whole irrigation season, and (iii) de�cit irrigation
(I0), which received 100% of ETc during the whole irrigation
season except for� 30 days before the airborne campaign when
irrigation was halted. The total amount of water applied in I100
throughout the growing season (from April to October) was
652 mm and 618 mm in 2018 and 2019, respectively. Each
treatment had three repetitions, each in a row, with the 10
di�erent rootstocks in each row. Rootstock distribution within
each row followed a randomized design. One additional row was
included between treatments for protection.

Trees were irrigated on a daily basis calculating water
requirements through a water balance method for replacing
crop evapotranspiration (ETc) as follows: ETc D (ETo x
Kc)–e�ective rainfall. The ETo was collected from the
public network of weather stations closest to the study site
(Xarxa Agrometeorològica de Catalunya (XAC), and Servei
Meterorològic de Catalunya., 2020), which uses the Penman-
Monteith method (Allen et al., 1998) to calculate it. Annual
ETo was 1061 and 1133 mm in 2018 and 2019, respectively.
The Kc used were derived fromGoldhamer (2012): Kc1 D 0.70
(April), Kc2 D 0.95 (May), Kc3 D 1.09 (June), Kc4 D 1.15
(July), Kc5 D 1.17 (August), and Kc6 D 1.12 (September).
E�ective rainfall was estimated as half of the rainfall for a single
event-day with more than 10 mm of precipitation; otherwise was
considered to be zero. The irrigation system consisted of two drip
lines, with �fteen drippers per tree (3.5 L h� 1 per dripper). Soil
texture was clay-loam and the e�ective soil depth was� 150 cm.
Tree management for pruning, diseases and pests control, soil
management and fertilization was based on Spanish integrated
production management practices (BOE, 2002).

Image Collection
The airborne campaign was conducted on 24th July and 28th
of August 2018, and on 24th July 2019. Air temperature (Ta)

FIGURE 1 | Location of the �eld experiment, observing in(A) the study site located at the IRTA experimental station in Les Borges Blanques (Lleida, Spain), and(B)
design of the almond rootstock trial with three irrigation treatments (I100, I50, and I0).
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TABLE 1 | List of evaluated rootstock, parentage, origin and tested cultivar.

Rootstock Parentage Origin

Adesoto Clonal selection ofPrunus
insititia

CSIC-Aula Dei (Spain)

CadamanR
 Prunus persica� Prunus
davidiana

IFGO (Hungary) and
INRA

GarnemR
 Prunus dulcis� Prunus persica CITA (Spain)

INRA GF-677 Prunus dulcis� Prunus persica INRA (France)

IRTA-1 Prunus dulcis� Prunus persica IRTA (Spain)

IRTA-2 Prunus cerasifera� Prunus
dulcis

IRTA (Spain)

IshtaraR
 (Prunus cerasifera� Prunus
salicina)� (Prunus
cerasifera� Prunus persica)

INRA (France)

Rootpac R
 R Prunus cerasifera� Prunus
dulcis

Agromillora Iberia
(Spain)

Rootpac R
 40 (Prunus dulcis� Prunus
persica) � (Prunus
dulcis � Prunus persica

Agromillora Iberia
(Spain)

Rootpac R
 20 Prunus besseyi� Prunus
cerasifera

Agromillora Iberia
(Spain)

and vapor pressure de�cit (VPD) at the moment of image
acquisition were, respectively, 33.4� C and 2.9 kPa for 24th July
2018, 31.3� C and 2.2 kPa for 28th August 2018, and 34.4� C
and 3.6 kPa for 24th July 2019. Flights were conducted at 12:00
solar time (14:00 local time) with a thermal (FLIR SC655, FLIR
Systems, Wilsonville, OR, United States) and multispectral sensor
(MACAW, Tetracam, Chatsworth, CA, United States) on board
a manned aircraft. Flight altitude was� 200 m above ground
level, providing thermal and multispectral images at� 0.25 and
0.03 m pixel� 1 average resolution, respectively. The thermal
sensor has a spectral response in the range of 7.5–13mm and
an image resolution of 640� 480 pixels. The optical focal length
is 13.1 mm, yielding an angular �eld of view of 45� . The sensor
has a focal plane array based on uncooled microbolometers. The
MACAW sensor has 1.4 mega-pixel complementary metal-oxide
semiconductor (CMOS) sensors with a 9.6 mm �xed lens. These
provide images of 1,280� 1,024 pixels. The sensor contains six
user-selectable narrow band �lters at 10 nm full width at half
maximum (FWHM), with center wavelengths at 515.3, 570.9,
682.2, 710.5, 781.1, and 871.8 nm. The thermal sensor was
connected to a laptop via ethernet, and the multispectral camera
via USB 3.0 protocol. All thermal and multispectral images were
radiometrically, atmospherically and geometrically corrected.
The radiometric calibration of the thermal sensor was assessed in
the laboratory using a blackbody (model P80P, Land Instruments,
Dron�eld, United Kingdom). The radiometric calibration of
the multispectral sensor was conducted through an external
incident light sensor which measured the irradiance levels of
light at the same bands as the MACAW multispectral sensor.
In addition, in situ spectral measurements in ground calibration
targets were performed using a Jaz spectrometer (Ocean Optics,
Inc., Dunedin, FL, United States). The Jaz has a wavelength
response from 200 to 1,100 nm and an optical resolution
of � 0.3–10.0 nm. During spectral collection, spectrometer

calibration measurements were taken with a reference panel
(white color Spectralon) and dark current before and after taking
readings from radiometric calibration targets. In addition, a
range of �eld calibrations were conducted throughin situ surface
temperature measurements in ground calibration targets using
a portable IR gun (Fluke 62 mini IR thermometer, Everett,
WA, United States). Geometric correction was conducted using
ground control points (GCP), and measuring the position in
each with a handheld GPS (Global Positioning System) (Geo7� ,
Trimble GeoExplorer series, Sunnyvale, CA, United States) with
a precision of� 0.20 cm. All images were mosaicked using
the Agisoft Metashape Professional software (Agisoft LLC., St.
Petersburg, Russia) and geometrically and radiometrically terrain
corrected with QGIS 3.4 (QGIS 3.4.15).Figure 2 shows the
�owchart of the procedures used to process the images and obtain
the information of the di�erent parameters.

Field Measurements
The fraction of photosynthetically active radiation (PAR)
intercepted by the canopy (�PAR) was measured on the same
clear days as image acquisition from 11:00 to 14:00 h (local
time) using a portable linear ceptometer (AccuPAR model LP-
80, Decagon Devices Inc., Pullman, WA, United States). Incident
PAR above and below the canopy was measured for each tree.
Twenty PAR readings were recorded below each tree canopy
covering the tree spacing. The ceptometer was placed in a
horizontal position at ground level perpendicular to the row. The
�PAR was calculated by dividing the averaged PAR below the
canopy by the incident PAR taken in full sunlight at an open site
with no interference from the canopy. The LAI was derived by
means of�PAR, using the Norman-Jarvis model (Norman and
Jarvis, 1974) and assuming a leaf absorptivity for light at 0.9.
Daily �PAR (�PARd) was estimated using an hourly model of light
interception (Oyarzun et al., 2007). In the model, the porosity
parameter was estimated so that the simulated hourly intercepted
value at noon equalled the instantaneous value measured in the
�eld. Then, �PARd was calculated by integrating the diurnal
course of the simulated�PAR. Tree architectural parameters such
as canopy height, crown width perpendicular to and along rows,
and branch insertion height were also measured.

Concomitant to image acquisition, one midday9 stem was
measured in each tree. Shaded leaves were selected and kept
in a plastic bag covered by aluminum foil for 2 h before the
measurement in order to equilibrate the water potential between
leaf, stem and branches. All measurements were acquired in less
than 2 h with a pressure chamber (Plant Water Status Console,
Model 3500; Soil Moisture Equipment Corp., Santa Barbara, CA)
and following the protocol established byShackel et al. (1997).

Biophysical Traits of the Vegetation
Three di�erent approaches were tested to estimate LAI and
�PARd: (i) estimates of canopy height and volume through
photogrammetry, (ii) spectral vegetation indices (VIs), and (iii)
the PROSAIL radiative transfer model.

The three-dimensional (3D) tree canopy volume was
obtained following the protocol described byCaruso et al.
(2019). The digital surface model (DSM) was generated from
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FIGURE 2 | Flowchart of the procedures used for processing the multispectral and thermal images in order to obtain the different biophysical variables of the
vegetation and some of the inputs for the two-source energy balance (TSEB) and Shuttleworth and Wallace (S-W) models.

the photogrammetric point cloud of multispectral images.
A classi�cation of bare ground pixels located between tree rows
were used to obtain the digital terrain model (DTM) of the
orchard. Then, a raster corresponding to heights (from the
ground to maximum height of the canopy) was obtained by
subtracting the DTM from the DSM using the raster calculator
tool of the QGIS software.

The semi-automatic OS v.6 classi�cation plugin of the QGIS
software (Congelo, 2016) was used to classify vegetation, sunlit
and shadowed bare soil and weeds (Figure 2). Then, the
vegetation mask was used to delineate each crown area through
the watershed object-based segmentation algorithm included in
the Orfeo Toolbox, and to obtain the average height and crown
area of each individual tree. Canopy volume of each pixel was
obtained by multiplying the pixel area by its corresponding height
value (from the ground to the maximum height within the pixel)
(Caruso et al., 2019). The total volume of each tree was obtained
by adding all the canopy pixels. Finally, the net canopy volume
was calculated by subtracting the volume comprised between the
ground and the branch insertion of the canopy from the total
volume of each tree.

Several spectral VIs were obtained from multispectral images
(Table 2). These indices have been shown to be closely
related to certain speci�c features of plant structure and have
demonstrated a great potential to estimate the LAI (Haboudane
et al., 2004). Besides the extensively used normalized di�erence
vegetation index (NDVI), this study tested di�erent indices
within the red-edge spectral region. The red-edge region is
characterized by a sharp change in vegetation re�ectance due
to chlorophyll absorption, and it has been demonstrated that
this is strongly in�uenced by the LAI (Delegido et al., 2013;
Xie et al., 2018).

The LAI and�PAR were also estimated following the protocol
described byWeiss and Baret (2016), which retrieves these
parameters from Sentinel-2 bands. Instead, this study used the six

very-high resolution spectral bands of the multispectral sensor.
The method consists of generating a large comprehensive dataset
of vegetation characteristics, covering all possible ranges in the
vegetation parameters described inTable 3, after which simulated
re�ectance factors are obtained by running the PROSAIL model
(Jacquemoud et al., 2009) in forward mode. With these two
arrays of values (vegetation parameters and simulated spectra),
a neural network was built per each parameter (many-to-one
relation). Finally, the trained neural network was applied to
the multispectral images for each tree, computing the average
re�ectance of a rectangular grid with tree spacing distance (4.5
� 5.0 m), in order to predict the biophysical parameters from the
re�ectances acquired by the multispectral camera.

Evapotranspiration and Crop Water
Stress Index
The TSEB model was used to estimate ETa and its partition
between soil and vegetation. One of the main advantages of
TSEB is that it estimates evaporation (E) and transpiration
(T) separately using information from Trad and biophysical
parameters of the vegetation, which are available from RS. The
TSEB was originally formulated byNorman et al. (1995)and
further improved byKustas and Anderson (2009). The energy

TABLE 2 | List of spectral vegetation indices (VI), their formulation and reference.

Index Formula References

NDVI (R870� R680)/(R870 C R680) Rouse et al., 1973

GNDVI (R870� R570)/(R870 C R570) Gitelson et al., 1996

MCARI [(R710� R680/ � 0.2 (R710-R570)] R710/R680 Daughtry et al., 2000

NDRE (R870� R710)/(R870 C R710) Barnes et al., 2000

MSRRE (R870/ R710/ � 1/
p

R870 C R710 C 1 Wu et al., 2008

R is de�ned as re�ectance.
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balance is based on the principle of conservation of energy, which
calculates latent heat �ux as a residual of the surface energy
equation (Eq. 1):

LE � Rn � H � G (1a)

LES � Rn; S � HS � G (1b)

LEC � Rn; C � HC (1c)

where LE is the latent heat �ux (W m� 2), Rn is the net radiation
�ux (W m � 2), G is the soil heat �ux (W m� 2), and H is the
sensible heat �ux (W m� 2). The subscriptscandsrefer to canopy
and soil, respectively. Surface soil heat �ux around solar noon (G)
is often calculated in TSEB as a constant fraction of Rn,S.

Sensible heat �ux (H) is partitioned into soil (Hs) and canopy
(Hc) �uxes, in which heat �ux transport between soil and canopy
are connected in series following an analogy of Ohm's law for
electric transport:

Hs D r Cp
Ts � Tac

rs
(2a)

Hc D r Cp
Tc � Tac

rx
(2b)

Hs C Hc D H D r Cp
Tac � Ta

rah
(2c)

wherer is the air density (kg m� 3), Cp is the speci�c heat of air
(J kg K� 1), Ts is the soil temperature (K),Ta is the air temperature

TABLE 3 | List of parameters and their ranges used in PROSAIL
re�ectance modeling.

Image acquisition 24th July
2018

28th August
2018

24th July
2019

DOY 205 240 205

Time image acquisition 12.50 12.25 12.25

Solar irradiance (W.m� 2) 924 778 910

Solar zenith angle (� ) 21.81 32.04 21.38

Solar azimuth angle (� ) 193.43 184.53 183.91

Spectral bands (nm) 515.3, 570.9, 682.2, 710.5, 781.1, 871.8

Soil re�ectance 0.121, 0.163, 0.192, 0.319, 0.373, 0.363

Number of simulations 100,000

Latitude 41.5

Longitude 0.85

Nleaf 1.2–2.2

Cab (mg.cm� 2) 0–90

Car (mg.cm� 2) 0–40

Cbrown 0.0–1.0

Cw (g.cm� 2) 0.003–0.011

Cdm (g.cm� 2) 0.003–0.011

LAI 0.0–6.0

Average leaf angle (� ) 30–80

Hotspot (m.m� 1) 0.1–0.5

Nleaf, Leaf mesophyll structure parameter; Cab, Leaf chlorophyll content; Car,
Carotenoids content; Cbrown, Leaf brown pigments content; Cw , Leaf water
content; Cdm, Leaf dry matter content.

(K), Tac is the air temperature in the canopy layer (K),rs is the
resistance to heat �ow in the boundary layer immediately above
the soil surface (s m� 1), rx is the total boundary layer resistance of
the complete canopy leaves (s m� 1), andrah is the aerodynamic
resistance (s m� 1) to turbulent heat transport between the air-
canopy layer and the overlying air layer.

When TSEB runs with coarse resolution satellite-derived
images, soil and canopy temperature cannot be directly retrieved.
In such cases, Tc and Ts are estimated in an iterative process
in which it is �rst assumed that green canopy transpires at a
potential rate based on the Priesley-Taylor equation (Priestley and
Taylor, 1972). In this study, however, the high spatial resolution
imagery allowed direct retrieval of Ts and Tc without the need to
compute an initial canopy transpiration (Nieto et al., 2019). That
is, Tc and Ts were individually obtained for each tree and for the
bare soil pixels within the 5� 4.5 m square grid, respectively. For
this purpose, the previously mentioned supervised classi�cation
was used, and Ts corresponded to the averaged sunlit and
shadowed bare soil pixels within each grid.

As in other TSEB models, this methodology also requires
LAI to calculate radiation partitioning as well as wind
attenuation through the canopy toward the soil surface. Ground
measurements of LAI were used in the TSEB. Ancillary variables
that were needed, such as meteorological data, were obtained
from the closest weather station to the study site (XAC, Les
Borges Blanques: 41� 30040.8500N; 0� 51022.2100E). Given Tc and Ts,
the heat �uxes from the soil and canopy can be derived directly
using Eqs. (2a,b) and the sensible heat �ux from Eq. (2c). Actual
evapotranspiration at the instant of aircraft image acquisition
(ETinst) was calculated as:

ETinst D 3600
LE
I� w

(3)

where ETinst is the instantaneous ET (mm h� 1), r w represents
the density of water (1,000 kg m� 3), and l is the latent heat of
vaporization (J kg� 1). Then, ETinst was upscaled to daily water
�uxes, in units of mm/day, by multiplying the instantaneous ratio
between latent heat �ux and solar irradiance by average daily solar
irradiance (Cammalleri et al., 2014).

The ETp was retrieved from the S-W model (Shuttleworth and
Wallace, 1985). This model also considers two coupled sources
in a resistance network: the transpiration from vegetation and
the evaporation from substrate soil. The theoretical basis of
the S-W model is the Penman-Monteith energy combination
equation, and includes two parts, one for the soil surface and the
other for the plant surface. The potential evapotranspiration and
transpiration computed by the S-W model, setting a minimum
stomatal resistance value of 100 sm� 1, are then used as the basis
for estimating the theoretical metrics of the crop water stress
index (CWSI). In this study, the CWSI was calculated as:

CWSID 1 �
ETa

ETp
(4)

where ETa and ETp correspond to actual and potential
evapotranspiration, estimated, respectively, from the TSEB and
S-W models.
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FIGURE 3 | Comparison between ground measured and airborne-estimated
maximum canopy height of almond trees on 24th July and 28th August 2018
and 24th July 2019. Linear regression corresponds to aggregated data of the
three dates.

Statistical Analysis
Data was analyzed using the JMPR
 statistical software (SAS
Institute Inc., SAS Campus Drive, Cary, NC, United States).
Estimates of LAI and�PARd were also derived using a stepwise
multiple regression analysis which included the VIs and canopy
volume estimates as dependent variables. All the variables were
evaluated with a three-way analysis of variance (three-way
ANOVA). Statistical signi�cance was established forP < 0.05.
Tukey's HSD test was applied to separate least square means that
di�ered signi�cantly.

RESULTS

Estimates of the Biophysical Variables of
the Vegetation
The one-to-one relationship between observed and estimated
canopy height was signi�cant for the three dates of image
acquisition, withR2-values ranging from 0.54 to 0.77 and RMSE
values from 0.43 to 0.65 m. TheR2 and RMSE were, respectively,
0.60 and 0.57 m when aggregating data from the three dates
(Figure 3). Values of measured canopy height and LAI ranged
between 2.7–5.9 m and 0.3–2.0 m m� 1, respectively. Estimates
of crown area and canopy volume through photogrammetry
were linearly related with�PARd and LAI, with R2 ranging
from 0.38 to 0.72 (Table 4), and being slightly higher for LAI.
Non-signi�cant di�erences were found when estimating these
parameters either through crown area or canopy volume, in part
because canopy height (used to estimate canopy volume) was
quadratically correlated with crown area (R2 D 0.60,p < 0.001).
All the tested spectral VIs were signi�cant and linearly correlated
with LAI and �PARd when the data was analyzed for individual

dates, but most of the regressions were not signi�cant when
the data from the three dates was aggregated. The modi�ed
chlorophyll absorption in re�ectance index (MCARI) showed the
lowestR2 in all cases. The NDVI and normalized di�erence red-
edge (NDRE) index had the highestR2 with LAI on 28th August
2018 and 24th July 2019. In addition, NDRE had the highestR2

on 24th July 2018. On that day, estimates of LAI through NDVI,
MCARI and the green normalized di�erence vegetation index
(GNDVI) showed the lowestR2. The VIs with the highestR2

with �PARd were similar to those reported for LAI. The use of
the radiative transfer model PROSAIL signi�cantly improved the
estimates of LAI and�PARd in comparison to the use of simple
VIs. TheR2 and RMSE for LAI ranged from 0.46 to 0.67 and from
0.24 to 0.39 m m� 1, respectively, and for�PARd from 0.45 to 0.64
and from 0.07 to 0.14%, respectively. In addition, when the data
from the three dates were analyzed together, theR2 and RMSE
were, respectively 0.40 and 0.34 m m� 1 for LAI and 0.29 and
0.12% for�PARd.

The multiple regression analysis using the empirical variables
slightly increased the predictions of LAI and�PARd in all cases.
Results indicated that the best predictions were obtained when
canopy volume was combined with other VIs, which varied
between dates. Overall, the best predictions of LAI and�PARd
using the three dates of data together were observed with the
multiple regression analysis. TheR2 and RMSE were, respectively,
0.60 and 0.22 m m� 1 for LAI and 0.56 and 0.07% for�PARd
(Table 4andFigure 4).

Comparison Between Rootstocks
The analysis of variance showed that the rootstock source was
signi�cant for all the evaluated variables (p < 0.0001) and that
thetreatment x rootstockinteractions were not signi�cant, except
for 9 stem (Table 5). Signi�cant di�erences between treatments
and for thedate x treatmentinteraction were also observed for
9 stem (p < 0.0001). The remotely sensed estimates of crown
area, canopy volume, LAI and�PARd were signi�cant for the
interactiondate x rootstock. The date source was also signi�cant
for ETa, ETa/�PARd, and kernel yield.

Overall, CadamanR
 and GarnemR
 had the highest crown
area, canopy volume, LAI and�PARd, followed by INRA GF-
677 (Table 6). On the other hand, RootpacR
 20 had the lowest
values for all the evaluated variables. Non-signi�cant di�erences
were detected between IRTA 1, IRTA 2, IshtaraR
 , RootpacR


R, RootpacR
 40, and Adesoto.Figure 5 shows the signi�cant
di�erences in9 stembetween rootstock and irrigation treatments.
The results show that RootpacR
 R and RootpacR
 20 were the
two rootstocks with the lowest9 stem for the three measured
dates. However, the latter had slightly lower values, mostly during
2018. On the other hand, GarnemR
 , CadamanR
 , Adesoto, INRA
GF-677, IRTA 1, IRTA 2, and RootpacR
 40 displayed similar
behavior for the three dates, showing the highest9 stem values.
Measurements conducted on 24th July 2018 showed signi�cant
di�erences between treatments in Adesoto, IRTA 1, IshtaraR
 and
RootpacR
 20. Signi�cant di�erences in9 stem for 28th August
2018 were only observed in INRA GF-677 and RootpacR
 40.
On 24th July 2019, all rootstocks except GarnemR
 , IRTA 2
and RootpacR
 R had signi�cant di�erences in9 stem between
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TABLE 4 | Coef�cients of determination (R2) of the regressions between leaf area index (LAI) and daily fraction of intercepted radiation (�PARd) with spectral vegetation
indices (VIs), crown area and canopy volume, PROSAIL radiative transfer model, and multiple regression analysis with empirical variables.

Parameters NDVI GNDVI MCARI NDRE MSRre Crown
area
(m2)

Canopy
volume

(m3)

Predicted LAI
and �PAR
(PROSAIL)

Multiple regression analysis

LAI 24=7=2018 0.24 0.25 0.30 0.56 0.54 0.72 0.72 y D 0.45xC0.60,
R2 D 0.67,

RMSED 0.24

y D � 0.74C3.31NDREC0.03Volume,
R2 D 0.74, RMSED 0.19

LAI 28=8=2018 0.57 0.50 0.49 0.51 0.48 0.65 0.64 y D 0.57xC0.20,
R2 D 0.46,

RMSED 0.38

y D � 1.81C6.93GNDVI-1.98MSRreC
0.02Volume,R2 D 0.70, RMSED 0.17

LAI 24=7=2019 0.41 0.41 0.36 0.42 0.41 0.44 0.49 y D 1.00xC0.05,
R2 D 0.56,

RMSED 0.39

y D � 1.22C3.50NDREC 0.02Volume,
R2 D 0.54, RMSED 0.30

LAI all ns ns ns 0.15 ns 0.59 0.58 yD 0.59xC0.49,
R2 D 0.40,

RMSED 0.34

y D 0.49C1.98NDRE-
1.06NDVIC0.03Volume,R2 D 0.60,

RMSED 0.24

�PARd 24=7=2018 0.37 0.39 0.15 0.49 0.46 0.53 0.50 y D 0.54xC0.28,
R2 D 0.64,

RMSED 0.07

y D � 0.91C0.05MSRreC
2.22NDVIC0.01Volume,R2 D 0.64,

RMSED 0.06

�PARd 28=8=2018 0.45 0.49 0.38 0.47 0.46 0.49 0.45 y D 0.80xC0.09,
R2 D 0.45,

RMSED 0.14

y D 0.03C0.83GNDVIC0.01Volume,
R2 D 0.56, RMSED 0.05

�PARd 24=7=2019 0.38 0.40 0.32 0.41 0.39 0.38 0.43 y D 1.15x� 0.15,
R2 D 0.51,

RMSED 0.14

y D � 2.93–3.21MSRreC12.75NDRE,
R2 D 0.53, RMSED 0.10

�PARd all ns 0.18 ns 0.16 ns 0.49 0.48 yD 0.44xC0.34,
R2 D 0.29,

RMSED 0.12

y D � 0.24C0.62GNDVIC6.95MCARIC
1.19NDRE-0.65NDVIC0.01Volume,

R2 D 0.56, RMSED 0.07

FIGURE 4 | Relationships between observed and estimated(A) LAI and(B) �PARd in almond trees, calculated from the equations obtained in the multiple regression
analysis for the three dates together (LAID 0.49+1.98NDRE-1.06NDVI+0.03Volume;�PARd D –0.24+0.62GNDVI+6.95MCARI+1.19NDRE-0.65NDVI+0.01Volume).

irrigation treatments. In all cases, the I0 treatment tended to have
the lowest9 stemvalues.

Among other parameters, LAI and Tc are inputs required
by the TSEB model to estimate the ETa of a crop. In
this study, di�erences in canopy to air temperature (Tc-Ta)
between rootstocks were also signi�cant and agreed with9 stem
measurements. More speci�cally, the relationships between Tc-
Ta and 9 stemhadR2 values of 0.57, 0.60, and 0.53 for 24th July
2018, 28th August 2018 and 24th July 2019, respectively (graphs
not shown). The relationships between ETa with Tc-Ta and LAI

gave respectiveR2-values of 0.57 and 0.87 for 24th July 2018, 0.66
and 0.87 for 28th August 2018, and 0.63 and 0.68 for 24th July
2019 (graphs not shown). These results suggest that ETa had a
stronger relationship with LAI than with Tc-Ta, probably due
to the lack of range in Tc-Ta values. In fact, both ETa and ETp
were also positive and linearly correlated with the canopy crown
area (Figures 6A,B). Values of ETa ranged from 1.8 to 8 mm
day� 1, depending on date and rootstock. For a given crown area,
ETa values varied between dates, with ETa rates corresponding
to 28th August 2018 lower than those of 24th July 2018 and 24th
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TABLE 5 | Results of an analysis of variance (three-way ANOVA) testing the factor effects (date, treatment and rootstock) on the different variables estimated
through remote sensing.

Variables/Source Area Volume LAI �PAR d 9 stem Tc -Ta ETa ETa / �PAR d CWSI Kernel yield

Date ns ns ns ns ns ns < .0001* < .0001* ns < .0001*

Treatment ns ns Ns ns < .0001* ns Ns ns ns ns

Rootstock < .0001* < .0001* < .0001* < .0001* < .0001* < .0001* < .0001* < .0001* < .0001* < .0001*

Date*Rootstock 0.0242* 0.0001* < .0001* 0.0076* ns ns ns ns ns < .0001*

Date*Treatment ns ns Ns ns 0.0084* ns ns ns ns ns

Rootstock*Treatment ns ns Ns ns 0.033* ns ns ns ns ns

Date*Rootstock*Treatment ns ns Ns ns ns ns ns ns ns ns

*Corresponds to signi�cant differences at p� 0.05; ns, not signi�cant.

TABLE 6 | Comparison of crown area, canopy volume, leaf area index (LAI) and daily fraction of intercepted radiation (�PARd) between almond rootstocks for each image
acquisition date.

Date Rootstock/
Variable

Adesoto Cadaman R
 Garnem R
 INRA
GF-677

IRTA 1 IRTA 2 Ishtara R
 Rootpac R
 R Rootpac R


40
Rootpac R


20

24th July 2018

Area

3.29 ef 10.97 a 11.30 a 8.72 b 5.31 cde 6.02 cd 6.09 cd 4.36 cde 6.97 bc 2.58 f

28th August 2018 8.34 cde 14.12 a 11.03 abc 9.51 bcd 9.02 bcd 7.21 de 7.09 de 8.62 cd 4.98 e 5.18 e

24th July 2019 4.58 fg 12.15 ab 12.62 a 10.02 bc 6.37 def 7.24 de 6.98 def 5.48 efg 8.21 cd 2.96 g

Mean 6.52 c 12.41 a 11.65 a 9.41 b 6.90 c 6.82 c 6.74 c 6.15 c 6.79 c 3.74 d

24th July 2018

Volume

4.81 ef 23.58 a 26.29 a 17.58 b 8.46 cde 10.87 cd 10.81 cd 6.77 def 12.81 c 3.04 f

28th August 2018 20.98 bc 36.32 a 28.52 ab 18.85 bc 19.55 bc 13.20 cd 14.24 cd 19.77 bc 7.39 d 8.11 d

24th July 2019 6.87 fg 29.86 ab 33.08 a 23.66 bc 11.87 ef 16.65 de 12.24 ef 8.46 fg 19.31 cd 2.87 g

Mean 10.57 c 29.92 a 29.21 a 20.03 b 13.29 c 13.57 c 12.49 c 11.67 c 13.39 c 5.07 d

24th July 2018

LAI

0.66 d 1.46 a 1.51 a 1.33 ab 0.84 cd 0.93 cd 0.96 cd 0.73 d 1.09 bc 0.60 d

28th August 2018 1.22 bcd 1.57 a 1.34 abc 1.27 abcd 1.19 bcd 0.98 def 1.05 cde 1.17 bcd 0.81 f 0.90 ef

24th July 2019 0.79 ef 1.25 abcd 1.69 a 1.60 ab 1.08 cde 1.08 cde 1.32 abc 0.81 def 1.23 bcd 0.46 f

Mean 0.92 bc 1.44 a 1.51 a 1.39 a 1.04 b 0.99 b 1.08 b 0.91 bc 1.05 b 0.67 c

24th July 2018

�PARd

0.47 0.63 ab 0.65 a 0.60 abc 0.50 cde 0.51 bcd 0.54 abcd 0.46 de 0.55 abcd 0.41 e

28th August 2018 0.68 ab 0.70 a 0.67 abc 0.64 abcd 0.61 abcd 0.57 cde 0.59 bcde 0.61 bcd 0.51 e 0.54 de

24th July 2019 0.49 de 0.61 abcd 0.68 ab 0.69 a 0.56 cd 0.56 bcd 0.65 abc 0.53 d 0.60 abcd 0.39 e

Mean 0.54 b 0.65 a 0.66 a 0.64 a 0.55 b 0.55 b 0.59 ab 0.53 b 0.55 b 0.45 c

Different letters mean signi�cant differences between rootstocks at p� 0.05 using Tukey's honest signi�cant difference test.

July 2019 (Figure 6A). These di�erences in ETa between dates
were more pronounced as crown area increased. The highest ETa
and ETp were observed in CadamanR
 and GarnemR
 in the three
dates, followed by INRA GF-677. On the other hand, RootpacR


20 was the rootstock with the lowest ETa and ETp. Adesoto and
RootpacR
 R also had low ETa and ETp values. When di�erences
between dates were atmospherically normalized through the
CWSI, all the data followed the same polynomial regression,
indicating that rootstocks with a low crown area (RootpacR
 20)
also seemed to be more stressed than those with higher crown
areas (CadamanR
 and GarnemR
 ) (Figure 6C). Maximum CWSI
values reached� 0.6 for trees with a crown area of� 2.5 m� 2.
The relationship between averaged ETa and9 stemwas signi�cant
(Figure 7A), as was the regression between CWSI and9 stem
(Figure 7B). These regressions indicate that trees grafted on the
least vigorous rootstocks (RootpacR
 20 and RootpacR
 R) were
also those with the lowest9 stem values. Accordingly, these two
rootstocks also had the highest CWSI and lowest ETa rates,
with values ranging from 1.4 to 5.3 mm day� 1. Of these two
rootstocks, RootpacR
 20 had the lowest9 stemand ETa.

It can be seen inFigure 8A that kernel yield was positively
linearly related to ETa in both years, although theR2 varied
between them. It can also be seen that kernel yield tended to
decrease as CWSI increased, reaching minimum yields at CWSI
values of around 0.5–0.7 (Figure 8B).

DISCUSSION

The e�ect of rootstock on tree canopy vigor has been widely
reported throughin situ measurements of TSCA, canopy volume
or LAI (Russo et al., 2007; Gullo et al., 2014; Mestre et al.,
2015; Yahmed et al., 2016; Lordan et al., 2019). However, this
study demonstrates the feasibility of using very high-resolution
multispectral airborne imagery to estimate the architectural traits
of the vegetation in an almond rootstock trial and to use them to
estimate ETa.

The results con�rm that the best �t to estimate LAI and
�PARd was through the combination of information derived
from photogrammetry and VIs (Table 4). The highestR2 values
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FIGURE 5 | Differences in stem water potential (9 stem) between rootstock and irrigation treatments (I100, I50, I0) for the three dates of image acquisition (24th July
and 28th August 2018 and 24th July 2019). Letters indicate statistically signi�cant differences between rootstock (P < 0.05, Tukey's HSD test).

FIGURE 6 | Relationships between estimated canopy crown area and(A) actual evapotranspiration (ETa), (B) potential evapotranspiration (ETp) and (C) CWSI,
calculated as 1-ETa/ET0, for the three dates of image acquisition (24th July 2018 and 2019 and 28th August 2018). Shadowed lines indicate the 95% con�dence
intervals of the regression models.

with both LAI and�PARd were obtained when photogrammetric
techniques were used to estimate crown area and canopy
volume. Since the latter depends on canopy height, which
showed an RMSE of 0.57 m (Figure 3), it is possible that any
advance in accuracy when estimating canopy height could also
contribute to improving estimates of LAI and�PARd. Increasing
the number of images acquired from di�erent viewing angles,
higher overlap, or lower �ying altitude in order to describe
the full 3D scene and avoid occlusion e�ects are some of

the ways that could help to improve canopy height estimates.
Other authors have been able to estimate canopy height with
greater accuracy. For instance,Zarco-Tejada et al. (2014)and
Caruso et al. (2019)obtained RMSE values of 0.22 and 0.35
m, respectively, in olive trees. However, the di�erence between
these two studies and ours was �ight altitude (� 130 m of
di�erence) and the trajectories taken by the unmanned aerial
vehicle platform which ensured larger image overlaps and point
cloud densities.
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FIGURE 7 | Relationships between stem water potential (9 stem) and (A) actual evapotranspiration (ETa), and (B) crop water stress index (CWSI) calculated as
1-ETa/ETp .

FIGURE 8 | Relationships between kernel yield (kg tree� 1) and (A) actual evapotranspiration (ETa) and (B) CWSI of the different rootstocks estimated on 24th July
2018 and 2019. Shadowed lines indicate the 95% con�dence intervals of the regression models.

The use of the PROSAIL model did not improve the estimates
of LAI and �PARd in comparison to the multiple regression
analysis, probably because this model was not designed for
sparse canopies with multiple layers, as is the case of almond
orchards (Berger et al., 2018). Until now, PROSAIL has been
mostly used to estimate LAI and�PAR with multispectral
satellite imagery in non-woody vegetation canopies such as
croplands (Duan et al., 2014; Li et al., 2015) and grasslands
(Darvishzadeh et al., 2008; Casas et al., 2014), as PROSAIL
assumes a homogeneous canopy of randomly placed leaves.
However, the model has barely been used in woody crops in
combination with very high resolution airborne multispectral
imagery. This study also showed that PROSAIL tends to
overestimate LAI (Table 4).

On the other hand, it is well-established that VIs are
strongly in�uenced by canopy architecture, optical properties,
sun illumination angle, viewing properties and soil background
(Huete, 1988; Guillen-Climent et al., 2012; Xie et al., 2018;

Prudnikova et al., 2019). In addition, saturations at moderate-
to-dense canopies, leaf area distribution, and clumping e�ect are
three of the most important issues in�uencing the accuracy of
optical LAI estimates in row crops (Delalieux et al., 2008; Sha�an
et al., 2018; Yan et al., 2019). For instance, our study showed that
NDVI, GNDVI and MCARI had low R2 with LAI and �PARd
on 24th July 2018, probably caused by a soil background e�ect.
The previous week, and up to 3 days before the �ight, a series
of rainfall events occurred at the study site amounting to a total
precipitation value of 20.2 mm. These events resulted in the moist
soil (i.e., “darker”) absorbing more light than other days, mostly
in the visible and NIR bands, and therefore a�ecting the values
provided by the indices that used these bands. On the other hand,
since most of these parameters are taken into consideration in
the PROSAIL model, estimates of LAI and�PARd tended to be
better and more consistent over time, although with a systematic
overestimation. The methodology used in this study to obtain
the biophysical variables of the vegetation was the same as that
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developed for the Sentinel-2 toolbox (Weiss and Baret, 2016). In
that case, a database containing the input radiative transfer model
variables was generated �rst. Then, the corresponding top-of-
canopy re�ectance for the eight Sentinel-2 bands were simulated
with the PROSAIL model. In contrast, in our study we used the
six bands derived from the MACAW multispectral sensor. It is
also possible that the use of di�erent and a lower number of bands
slightly a�ected the estimates of the biophysical variables.

In this study, all the estimates of the structural parameters of
the vegetation indicated that the most dwar�ng rootstock was
RootpacR
 20, followed by RootpacR
 R, RootpacR
 40, Adesoto,
Ishtara, IRTA 1, and IRTA 2. GarnemR
 , CadamanR
 , and INRA
GF-677 provided the highest values for the same structural
traits. These results are in agreement with, for instance, those
reported byLordan et al. (2019), who evaluated tree canopy
vigor in the same rootstock trial for a longer period and also
identi�ed GarnemR
 , CadamanR
 and INRA GF-677 as those with
the greatest tree volume, and RootpacR
 20 as the most dwar�ng
rootstock in the trial. In agreement,Yahmed et al. (2016)also
observed that GarnemR
 and RootpacR
 40 were, respectively the
most and medium vigorous rootstocks and that scions grafted on
RootpacR
 20 were the most dwar�ng.

The observed di�erences in ETa between dates could be
attributable to changes in atmospheric water demand, plant
response (stomatal closure) due to water stress, or some
phenological e�ect. In this case study, water stress can be
discarded because9 stemvalues of the date with the lowest ETa
(28th August 2018) were slightly less negative in comparison to
the other two dates, and because the same behavior was observed
with the estimates of ETp with the S-W model (Figure 6B).
Our hypothesis for the lower ETa values observed for 28th
August 2018 is that these are associated with a lower atmospheric
demand of water, since the midday VPD and daily solar
irradiance (Rs) for that day were slightly lower (VPDD 2.2 KPa
and RsD 195 W m� 2) than the other 2 days (respectively, 2.9 KPa
and 319 W m� 2 for 24th July 2018 and 3.6 KPa and 294 W m� 2

for 24th July 2019). Accordingly, Tc-Ta values for that day were
also higher. Several studies have published non-water-stressed
baselines (NWSB)for di�erent crops, which consist in relating
Tc-Ta with VPD at midday for well-watered trees (Bellvert
et al., 2016; García-Tejero et al., 2018; Gonzalez-Dugo et al.,
2019; Gutiérrez-Gordillo et al., 2020). These regressions indicate
that Tc-Ta tended to decrease as VPD increased. In addition,
Bellvert et al. (2018)showed that the regression between Tc-Ta
and VPD in California almonds was sensitive to the phenology,
indicating that for a given increase in VPD, early growth stages,
which correspond to vegetative growth (shell expansion and
hardening), have more transpiration cooling than the kernel and
post-kernel �lling stages.

Although the amount of water applied in the di�erent
irrigation treatments was the same for all rootstocks, the response
of most of the evaluated parameters varied between rootstocks,
particularly for 9 stem where the rootstock x treatmentand
date x treatmentinteractions were signi�cant (Table 5). As
seen inFigure 7, the least vigorous rootstocks (RootpacR
 20,
RootpacR
 R) had the lowest9 stem and ETa values. However,
RootpacR
 20 had slightly lowest9 stem than RootpacR
 R.

These rootstocks are characterized by havingPrunus cerasifera
(myrobolan) as one of the parents, which may lead to a
slight and delayed “localized” incompatibility between plum-
almond species, as has previously been described in cherry
and peach/plum (Treutter and Feucht, 1991) or almond/plum
(Bernhard and Grasselly, 1959) combinations. This type of
incompatibility is characterized by anatomical irregularities at
the rootstock/scion union interface with breaks in vascular
connections, which, in turn, prevent quick resumption of the
growth of both root and canopy (Errea et al., 2001; Leonardi and
Romano, 2004). It has also been demonstrated that trees grafted
on dwar�ng rootstocks such as RootpacR
 20 and RootpacR
 R
tend to have lower9 stem values, and that this is likely related
to the lower water absorption capability of the root system to
satisfy the transpiration demand of the canopy (Yahmed et al.,
2016). In our case, defoliation and yellowing problems were
also observed in some trees of the I0 treatment. The lower
9 stem observed in RootpacR
 20 could be explained because
this rootstock was obtained by crossing two plum species
(Prunus besseyi� Prunus cerasifera), and therefore probably
displaying a smaller root system, while RootpacR
 R had a higher
compatibility with the scion because at least has aPrunus dulcis
as one of the parents.

In terms of WUE or drought tolerance, several studies have
related canopy vigor and root system with the level of tolerance
(Serra et al., 2014; Zhang et al., 2016). The hypothesis is
that vigorous plants are usually more tolerant due to a bigger
root system, and vice versa. However, a comparison between
rootstocks with statistical di�erences in canopy vigor is not
always the most appropriate method because both plant water
demand and the amount of water available in the soil per unit
of canopy vigor will di�er depending on canopy size and may
therefore lead to inappropriate interpretations of the results. In
this study, in order to explain the di�erences between rootstocks,
we grouped them according to canopy vigor (mean of canopy
volume) (Table 7), and then analyzed the statistical di�erences
in the relations between9 stem and ETa within each group by
using data of the three �ights. A �rst group, which contained
GarnemR
 , CadamanR
 and INRA GF-677, was characterized
by having the highest ETa rates due to high canopy volume
and probably a longer root system which permitted a higher
water absorption capacity. Concurring with this �nding,Black
et al. (2010)described CadamanR
 as a rootstock with a high
root biomass. The ANCOVA analysis showed no signi�cant
di�erences between rootstocks in the ETa vs.9 stem regressions
of the group 1 (p D 0.721) (Table 8). Despite of this, it seems
that INRA GF-677 had slightly lower9 stemand ETa values and
a higher CWSI. A second group with medium canopy vigor
rootstocks was composed of RootpacR
 40, Adesoto, IRTA 1, IRTA
2, IshtaraR
 , and RootpacR
 R. RootpacR
 R had by some way the
lowest 9 stem values, which together with Adesoto and IRTA
1 corresponded with the lowest ETa rates, without signi�cant
di�erences among them. However, the low9 stem of RootpacR


R suggests that this rootstock was acting as if it had a lower
hydraulic conductivity or root biomass in comparison to the
others which caused a fall in9 stem. The ANCOVA analysis of
group 2 only showed signi�cant di�erences between rootstock
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TABLE 7 | Mean of the variables9 stem, ETa, and CWSI, and slope and intercept of the regression ETa vs. 9 stem for each rootstock grouped on the basis of the analysis
of variance of canopy volume.

Rootstock Group by canopy volume 9 stem ETa CWSI Slope Intercept

GarnemR
 1 � 0.95 � 0.07a 5:99a 0:10b 10:13 15:46

CadamanR
 1 � 0.99 � 0.07a 5:55ab 0:11b 5:59 11:07

INRA GF-677 1 � 1.08 � 0.12 b 5:05b 0:18a 2:66 7:92

Rootpac R
 40 2 � 0.99 � 0.09 a 4:32a 0:22c � 0:01 4:43

Adetoso 2 � 1.07 � 0.11 ab 3:07b 0:33ab 3:91 7:12

IRTA 1 2 � 1.09 � 0.15 ab 3:66ab 0:29b 2:99 6:93

IRTA 2 2 � 1.11 � 0.07 b 4:04a 0:22c 0:34 4:35

IshtaraR
 2 � 1.16 � 0.17 b 4:35a 0:22c 0:84 5:33

Rootpac R
 R 2 � 1.52 � 0.18 c 3:12b� 0:34a 0:67 4:29

Rootpac R
 20 3 � 1.63 � 0.24 � 2:12 � 0:49 � 0:66 3:14

Different letters mean signi�cant differences within each group at p� 0.05 using Tukey's honest signi�cant difference test. – means that no statistical analysis was
performed. *Corresponds to signi�cant differences at p� 0.05

TABLE 8 | Analysis of covariance (ANCOVA) of the relationships between ETa and 9 stem shown in Table 7 for rootstocks of groups 1 and 2.

Source g.l Sum squares Mean square F Prob > F HSD Tukey

Group 1 Model 5 28.71 5.74 4.13 0.003* GarnemR
 5.56 a

Error 68 94.57 1.39 CadamanR
 5.37 a

Total 73 123.28 INRA GF-677 5.22 a

9 stem 1 15.99 11.49 0.001*

Rootstock 2 0.91 0.32 0.721

Rootstock * 9 stem 2 3.84 1.38 0.257

Group 2 Model 11 42.52 3.86 5.46 < .0001* RootpacR
 40 3.99 ab

Error 129 91.39 0.71 Adesoto 2.87 c

Total 140 133.92 IRTA 1 3.49 bc

9 stem 1 3.26 4.61 0.034* IRTA 2 3.97 ab

Rootstock 5 21.73 6.13 < .0001* IshtaraR
 4.22 a

Rootstock * 9 stem 5 3.18 0.89 0.495 Rootpac R
 R 3.62 bc

Different letters mean signi�cant differences between rootstocks at p� 0.05 using Tukey's honest signi�cant difference test.

FIGURE 9 | Relationships between kernel yield/ETa (kg tree� 1 / mm of water evapotranspired) and stem water potential (9 stem) for (A) 24th July 2018, and (B) 24th
July 2019.

in the intercept (p D 0.034) (Table 8). Therefore, as there were
not signi�cant di�erences between slopes, we cannot a�rm
that these rootstocks have di�erences in the root hydraulic

resistance (Rroot). In order to improve our understanding of
the response of rootstocks to water stress, future studies should
be able to determine the hydraulic resistances of di�erent
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rootstocks through measurements of water potential gradients
and transpiration (López-Bernal et al., 2015). Di�erences in the
intercept could be explained either due to still small di�erences
in the canopy volume between rootstocks of group 2 or due
to a physiological response related with an anisohydric or
isohydric behavior. In fact, the rootstock with the signi�cantly
lower intercept (Adesoto) was the one with the lowest crown
area (Figure 6). The last group consisted solely of RootpacR


20, which had the lowest9 stem and ETa values.Opazo et al.
(2020)compared RootpacR
 20 and RootpacR
 40 and reported
that plants grafted on the former had lower transpiration rates,
less root biomass and proved to be less tolerant to drought
than the latter. Results obtained in our study reinforce these
observations (Table 7).

The establishment of the relationship between crop yield
and the consumptive use of water (the so-called production
function) in row crops is of particular interest, but at the
same time is not easy to obtain due to the need for long-
term studies and the di�culty in assessing consumptive use
(Goldhamer and Fereres, 2017). Although many studies have
demonstrated that almonds are one of the species able to
maintain high kernel yield under de�cit irrigation conditions
(Torrecillas et al., 1989; Girona et al., 2005; Egea et al., 2010),
other studies have reported that yield is dependent on canopy
PAR light interception, and therefore this will increase with
�PARd (Jin et al., 2020). In our study, the rootstocks with the
highest canopy volumes and�PARd (CadamanR
 and GarnemR
 )
had the highest ETa and yields, while the lowest yields were
observed in those which had the lowest ETa (RootpacR
 20,
followed by RootpacR
 40 and RootpacR
 R) (Figure 8A). It should
also be noted that theR2 of both the yield-ETa and yield-
CWSI regressions were higher in 2018 than in 2019, because
the former had higher yield while the latter coincided with an
alternate bearing year.

This study also shows the daily water production function
as yield per unit of water evapotranspired, using data from
24th July 2018 to 24th July 2019.Figure 9 shows that water
productivity (kernel yield/mm water evapotranspired) di�ered
between rootstocks and that the regression with9 stemtended to
decrease as water stress increased. This regression was signi�cant
for 2018 (Figure 9A) but not for 2019 (Figure 9B). The
rootstocks in the previously mentioned �rst group (GarnemR


and CadamanR
 ) showed the highest water productivity in
both years, together with INRA GF-677, IRTA 1, IRTA 2,
and RootpacR
 40. Although Adesoto and IshtaraR
 had similar
high 9 stem values, water productivity was slightly lower.
Interestingly, despite the negative9 stem of RootpacR
 R, water
productivity values were similar to those obtained in the
rootstocks in group 1. This is attributable to the signi�cantly
higher yield of RootpacR
 R, despite having9 stemand ETa values
similar to RootpacR
 20.

CONCLUSION

This study has demonstrated, for the �rst time, the feasibility
of using a surface energy balance model for high-throughput

phenotyping of crop evapotranspiration in an almond rootstock
collection. The analysis allowed the quanti�cation of the
following almond traits that are of paramount importance
in rootstock phenotyping: canopy tree height, crown area,
canopy volume, LAI, �PARd, actual and potential crop
evapotranspiration, and the crop water stress index. The
LAI and �PARd were, respectively, estimated with anR2 of 0.60
and 0.56 through a multiple linear regression equation, which
included estimates of both parameters obtained from spectral
vegetation indices and estimates of crown area and canopy
volume through photogrammetry techniques. CadamanR
 and
GarnemR
 were identi�ed as the rootstocks with the highest
canopy vigor as well as the highest ETa. These two rootstocks
were characterized by maintaining high9 stem values despite
reducing the amount of irrigation water applied. In contrast,
RootpacR
 20 and RootpacR
 R had the lowest canopy vigor and
ETa, and also the lowest9 stem in the I100 treatment suggesting
that this was due to a localized incompatibility between plum-
almond species, di�erences in the root system and/or low
hydraulic conductivity. Other rootstocks had medium canopy
vigor. Of these, Adesoto and IRTA 1 had the lowest ETa values
and RootpacR
 40 and Ishtara the highest. Yield was linearly
related with ETa. CadamanR
 and GarnemR
 also had the highest
water productivity, and RootpacR
 20 and RootpacR
 R the lowest.
However, the water productivity of RootpacR
 R was signi�cantly
higher than that of RootpacR
 20.

The use of energy balance models such as the TSEB using
very high-resolution imagery opens the possibility to e�ciently
evaluate the WUE of a crop in many other di�erent rootstock
collections or varieties located in di�erent environments.
This will improve the manner in which �eld phenotyping
has been applied until now and will help crop breeders
to better understand and identify the rootstocks/varieties
best adapted to drought. In addition, since the TSEB
allows the partitioning of plant transpiration and surface
evaporation components, future studies will focus on using
transpiration instead of ETa, and together with measurements
of water potential gradients, to determine di�erences in root
hydraulic resistances.
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