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A B S T R A C T   

Soil surface characteristics (SSCs) are of high importance for water infiltration processes in crop fields. As SSCs 
present strong spatiotemporal variability influenced by climatic conditions and agricultural practices, their 
monitor has already been explored by using UAV images and multispectral remote sensing. However, each 
technique has encountered difficulties characterizing this spatiotemporal variability. The objective of this work 
was to explore the potential of Sentinel-2 images to assess three SSCs – the green vegetation fraction, dry 
vegetation fraction and physical soil surface structure – at several dates. This work explored two approaches for 
classifying these three SSCs from five Sentinel-2 images acquired from August to November 2016. In the “single- 
date” approach, a Random Forest Classifier (RFC) model was trained to classify one SSCj from a dataset extracted 
from one Sentinel-2 image i (model noted RF_sdi,SSCj). In the “multi-date” approach, a RFC model was trained to 
classify one SSCj from a dataset extracted from the five Sentinel-2 images (noted RF_mdSSCj). The classification 
analysis showed that i) the RF_sdi,SSCj and RF_mdSSCj models provided accurate performances (overall accuracy >
0.79) regardless of the studied SSCj and the tested Sentinel-2 image, ii) the RF_sdi,SSCj model did not allow the 
classification of SSC classes that were not observed on the studied date, and iii) the RF_mdSSCj model allowed the 
classification of all SSC classes observed in the five Sentinel-2 images. This indicated that several Sentinel-2 
images can favourably be used to increase knowledge of spatiotemporal representation of SSCs by extending 
results of infrequent, localized and cumbersome field work.   

1. Introduction 

Soil infiltration is one of the most important earth surface processes 
controlling the water budget equation. It controls the water cycles 
among surface-water and allows the soil to temporarily store water, 
making water available for uptake by plants and soil organisms. Soil 
infiltration may substantially affect a series of ecological processes 
including water supply for plant growth and groundwater recharge 
(Ludwig et al., 2005), solute transport to deep soil and groundwater 
(Jarvis, 2007), and the development of surface runoff and soil erosion 
(De Roo et al., 1992). 

Soil infiltration characteristics, commonly represented by 

macroscale parameters such as soil hydraulic conductivity, sorptivity 
and infiltration rate can be measured directly on field (e.g., Mubarak 
et al., 2010). Nevertheless in-situ infiltration parameters could be 
difficult to measure precisely as some environmental factors, such as 
temperature, humidity and initial soil water content, could change 
during the time-consuming infiltration measurements (Mubarak et al., 
2010). Moreover direct measurements of infiltration characteristics are 
time consuming, expensive and often involve large spatial and temporal 
variability (Mishra et al., 2003). Soil infiltration characteristics can be 
also indirectly estimated using soil surface characteristics (SSCs; i.e. 
surface crust development, roughness, vegetation cover, texture…) as 
inputs of pedotransfer functions (Ghorbani-Dashtaki et al., 2016), such 
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the ones developed by Børgesen et al. (2008), Rashidi et al. (2014) or 
Patle et al. (2019). 

The construction of these pedotransfer functions needs to know the 
strong relations between SSCs and hydrological processes, but re
searches reached a consistent conclusion that the links between SSCs 
and hydrological processes are site-specific (e.g., Bormann and Klaassen, 
2008). Yimer et al., 2008 showed that principal factors causing the 
decline in infiltration capacity in the Bale Mountains National Park in 
Ethiopia are the changes in topsoil structure caused by surface soil 
compaction because of tillage and animal trampling coupled with a 
smaller soil organic carbon content. Joshi and Tambe (2010) showed 
that infiltration rate in Western India vary from subtle to noteworthy 
depending on slope angle, grass coverage, crop residue and gravels. 
Neris et al. (2012) showed that infiltration rate in volcanic island of 
Tenerife (Canary Islands, Spain) is highly dependent to soil aggregation 
and structural stability. Leonard and Andrieux (1998) showed that the 
major SSCs that drive infiltration processes in Mediterranean areas are 
green and dry vegetation coverage, topsoil structure, surface stone 
content, and soil texture (i.e., relative contents of particles of various 
sizes, such as sand, silt and clay). 

Except soil texture which can be characterized by high spatial vari
ability but low temporal variability and may therefore be considered as a 
permanent property, other SSCs that impact soil infiltration (namely, 
green and dry vegetation coverage, topsoil structure, surface stone 
content) are changing in time and space depending on climatic condi
tions (Chahinian et al., 2005) and agricultural practices (e.g., tillage, 
seeding, plant growing, maturity and harvesting) (Van Es, 1993; Martin 
et al., 2004; Bormann and Klaassen, 2008). So, the characterization of 
soil infiltration processes requires monitoring of the SSCs in both space 
and time at the plot resolution. 

The need for spatial SSCs characterization could be addressed by the 
use of visible, near-infrared and short-wave infrared (VNIR/SWIR) 
remote sensing data, as this technology provides synoptic coverage at a 
single date. VNIR/SWIR multispectral imagery has been used for map
ping SSCs with different degrees of success levels. The green vegetation 
fraction is usually successfully mapped by using the normalized differ
ence vegetation index (NDVI) (e.g., Zhang et al, 2006), which can be 
calculated using the red and near-infrared bands measured by the 
multispectral VNIR/SWIR sensors (e.g., Carlson and Rizile, 1997). The 
dry vegetation fraction has a unique absorption feature near 2100 nm 
associated with cellulose and lignin (Daughtry 2001), but most of the 
multispectral VNIR/SWIR sensors do not allow the use of this specific 
absorption feature. The Normalized Difference Tillage Index (NDTI) was 
demonstrated to be the best of the Landsat-based tillage indices for 
estimating residue cover, exploiting the difference in reflectance be
tween the two Landsat shortwave infra-red (SWIR) bands centered near 
1600 nm and 2300 nm (Van Deventer et al., 1997). The ASTER bands 
have been used with success to compute advanced multispectral residue 
indices such as the Shortwave Infrared Normalized Difference Residue 
Index (SINDRI) (e.g., Serbin et al., 2009). Finally, the SINDRI was 
demonstrated to provide better accuracy than the Lignin Cellulose Ab
sorption Index (LCA) for estimating residue cover, exploiting the 
WordView data (Hively et al., 2018). The soil texture influences both the 
spectral intensity and absorption band depth at 2200 nm (e.g., Clark 
et al., 1990; Gomez et al., 2012) and can be mapped using a linear 
regression built based on the entire spectra (Vaudour et al., 2019) or on a 
spectral index using SWIR bands (Shabou et al., 2015). The topsoil 
structure may influence the general shape of the spectrum as crust, 
cracked clay and roughness may influence the surface colour, brightness 
and surface structure (e.g., Matthias et al., 2000; Ben-Dor et al., 1999); 
but, from our knowledge, the topsoil structure has not been studied with 
VNIR/SWIR multispectral data. Finally, VNIR/SWIR multispectral im
agery has been successfully used to map the typology of the hydrological 
SSC classes according to a predefined typology based on the infiltration 
rates instead of mapping the single SSC attributes with multispectral 
images acquired by unmanned aerial vehicles (e.g., Corbane et al., 

2008). 
The need for SSCs monitoring could be addressed by the use of 

remote sensing image time series. The remote sensing image time series 
are mostly used as a chronicle of data in which the temporal patterns of 
the spectral response are considered as inputs to characterize elements 
of the land surface (e.g., crop type and land use management) (e.g., 
Bellón et al., 2017; Wang et al., 2019; Vuolo et al., 2018). Following this 
approach, Belgiu and Csillik (2018) took into account the temporal se
quences in a time series of Sentinel-2 data (the order of the Sentinel-2 
data acquisition dates) to extract the temporal phenological patterns 
and then classify the croplands. Their classifier inputs were the NDVI 
time series, which were considered temporal phenological patterns, and 
the outputs were cropland maps for each study area and for the entire 
selected period. Another example is the study of Rapinel et al. (2019), 
which attempted to map floodplain grassland plant communities using a 
time series of Sentinel-2 data (without considering the order of the 
Sentinel-2 data acquisition dates) and a random forest method. Another 
approach consists in using remote sensing image time series to detect 
changes between two dates or during a period (e.g., Navarro et al, 2017), 
for example based on differences in spectral indices (e.g., NDVI) be
tween images. Following this approach, Sicre et al. (2016) successfully 
used a time series of FORMOSAT and SPOT data for summer crop 
detection based on a decision tree using thresholds on NDVI values. 
Finally, another approach consists in using remote sensing image time 
series as a succession of single-date remote sensing images, where each 
remote sensing data acquisition is treated separately. The character
ization of earth surface elements (e.g., green vegetation stages, Vuolo 
et al. 2018) may be done at each date with each single-date remote 
sensing data. From our knowledge about the SSCs that impact the hy
drological processes, only the green vegetation fraction has been studied 
both in time and space using time series VNIR/SWIR multispectral data, 
such as the Chinese GF-1 data used by Jia et al. (2016) and the LANDSAT 
data used by Jia et al. (2017). 

The objective of this work was to explore the potential of the 
Sentinel-2 images to assess three SSCs – the green vegetation fraction, 
dry vegetation fraction and physical soil surface structure – at several 
dates. The study area and data are presented in Section 2. The meth
odology was described in Section 3 based on random forest supervised 
classification trained with field data. Finally, the results are presented in 
Section 4 and discussed in Section 5. 

2. Materials and methods 

2.1. Study area 

The study area is the Kamech catchment (2.63 km2) located on the 
Cap Bon peninsula in north-eastern Tunisia (Fig. 1) with a semi-arid 
climate. The Kamech catchment belongs to the long-term environ
mental research observatory OMERE (Mediterranean Observatory of 
Water and Rural Environment), which aims to investigate the anthro
pogenic impacts on water and sediment budgets at the catchment scale 
(Molénat et al., 2018). The Kamech catchment is characterized by roll
ing hills with a maximum drop of 110 m. The substrate within the 
catchment formed from Miocene marine sediments, and is mainly 
composed of alternations of slightly calcareous laminated mudstone and 
thin hard sandstone layers. The soils were developed both over and from 
the Miocene deposits. The main soil types include Calcil or Chromic 
Vertisols (52.5%), Clayic Calcisols (22%), Vertic Regosols (17%), Lep
tosols (5%) and Colluvic Cambisols (3.5%), according to the FAO clas
sification (WRB, 2015). These soils are characterized by a narrow and 
low range of soil organic matter content (from 0.3 to 2%), a moderate 
range of soil calcium carbonate (from 0.2 to 19.9%) and a large range of 
clay content (from 12 to 67%) (Molénat et al., 2018). This area is mainly 
rural (>95%) and is devoted to cereals cultivation in addition to legumes 
and fodder for animals. Cultivation practices throughout the Kamech 
catchment are representative of traditional agriculture in the relief zone 
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of Cap Bon peninsula. 
Within the study area, crop emergence occurs between October and 

December, depending on farmers and meteorological conditions. Agri
cultural practices between the harvest and the growth of the new crop 
include several steps: 1) the harvest lets surface dry vegetation (litter 
and/or crop stubble) (July to September), 2) a first surface ploughing is 
conducted after the first rain (often in October over the Kamech catch
ment), 3) a second deeper ploughing is conducted, approximately 15 
days after the first ploughing, 4) the crops are seeded and then 5) the 
crop is grown. 

Finally, with inter-annual precipitation of 600 mm a most intense 
precipitations occur between September and December (>350 mm) and 
lower precipitations occur during the remaining months, with a very dry 
summer. 

2.2. Field data 

2.2.1. Field boundaries and land use map 
The field boundaries and a land use map for Kamech were produced 

in 2016 through field work with a handheld GPS (Fig. 1c) (Jenhaoui 
et al., 2008). The observed land uses were annual crops, natural vege
tation, olive and fruit tree plantations, lakes, urban areas and roads. The 
total number of annual crops over the study area is 384. These 384 fields 
are characterized by a minimum, maximum and mean plot area of 
approximately 0.03, 1.4 and 0.59 ha, respectively (Table 1). 

2.2.2. Soil surface characteristic (SSC) observations 
Starting in 2003, the SSCs were routinely observed in 34 plots of the 

Kamech catchment dedicated to annual crops (red, blue and green fields 
on Fig. 1c). The SSCs observations follow a protocol initially proposed 
by Andrieux et al. (2001), then adapted to the Kamech catchment in 
Tunisia (Molénat et al., 2018). The protocol was initially based on works 
developed by Leonard and Andrieux (1998) dedicated on the Roujan 
catchment (91 ha), also belonging to the long-term environmental 

research observatory OMERE (Molénat et al., 2018), which is located in 
Southern France about 60 km West of Montpellier, in a Mediterranean 
context mostly devoted to vineyard culture. The 34 observed fields were 
selected based on hydrological purposes, and the selected SSCs and their 
associated ranges were chosen in regard to their effect on hydrological 
processes such as infiltration rate and runoff generation (Leonard and 
Andrieux, 1998; Pare et al., 2011). 

The SSCs were routinely observed every 2 weeks on average during 
the September-July period. As these SSCs field observations are dedi
cated to hydrological studies, e.g. runoff and infiltration (Leonard and 
Andrieux, 1998; Pare et al., 2011), observations timing is adapted to 
meteorological conditions and farmers practices. No observations are 
conducted in August because all crops are harvested and neither man
agement practices nor rains occur during this month. The field obser
vations dates result from a trade-off between field accessibility after 
rainfall events and known agricultural practices, including harvest 
(occurring in July), ploughing (occurring from the first rains around 
October), and seeding (occurring after soil ploughing, around 
November) until crop growth (occurring from mid-November). From 
beginning of August to end of December 2016, six SSCs field observa
tions were done by the same operator and five were used in this work 
(Table 2). 

Each SSC was described at field scale by the same operator by visual 
inspection, where a field is an area of land used for one specific crop per 
cultivated season (Fig. 1c). Only one class was written down per field per 
SSC, regardless of the field size. When a single field is composed by 
several classes of SSC, the operator writes down the majority class of this 
SSC. First, the operator has to observe elements characterizing the soil, 
such as ploughing, physical soil surface structure and roughness. 

Fig. 1. a) Location of Tunisia in Africa, b) Location of the Kamech catchment on Cap Bon peninsula and c) Field boundaries in the Kamech catchment, plotted over a 
Sentinel-2 image acquired on the 4th of August 2016 (the 34 observed fields are indicated in red, blue and green depending on their location). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Statistics of area (in ha) on fields.   

All fields over Kamech 34 fields with observed SSCs 

Min 0.03  0.07 
Max 14  12.27 
Mean 0.59  0.51 
Standard Deviation 1.04  0.32  

Table 2 
Acquisition dates of the five Sentinel-2 images and associated field observations 
dates where i is the date number. *There was neither cultural operation nor sig
nificant rainfall during this time period.  

Date 
Number i 

Date of Sentinel 2 
images 
acquisition (Y-M- 
D) 

Date of field 
observations (Y- 
M-D) 

Number of days 
between images 
acquisition and field 
observation 

1 2016–08-04 2016–09-01 28* 
2 2016–10-03 2016–09-28 5 
3 2016–11-02 2016–11-03 1 
4 2016–11-22 2016–11-21 1 
5 2016–12-02 2016–12-02 0  
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Second, the operator has to observe elements characterizing the soil 
coverage such as vegetation fraction and coarse elements cover. 

Three major SSCs were studied in this work: 1) the green vegetation 
fraction, 2) the dry vegetation fraction and 3) the physical soil surface 
structure. The green vegetation fraction was observed within the 
following six classes: green vegetation fraction of 0% (which means total 
absence of green vegetation), 0% < green vegetation fraction ≤ 5%, 5% 
< green vegetation fraction ≤ 25%, 25% < green vegetation fraction ≤
50%, 50% < green vegetation fraction ≤ 75% and 75% < green vege
tation fraction ≤ 100%. The dry vegetation fraction was observed within 
the following six classes: dry vegetation fraction of 0% (which means 
total absence of dry vegetation), 0% < dry vegetation fraction ≤ 5%, 5% 
< dry vegetation fraction ≤ 25%, 25% < dry vegetation fraction ≤ 50%, 
50% < dry vegetation fraction ≤ 75% and 75% < dry vegetation frac
tion ≤ 100%. The physical soil surface structure was observed within six 
classes: dry soil surface without crust, aggregate or clod, mainly 
observed after a recent tillage (noted F0); surface with fine and 
continuous crust, mainly observed after some moderate rainfall without 
water flow (noted F1); surface with crust, mainly observed after a heavy 
rain (may happen around October-November) or after a long period of 
dry climate (may happen from August to end of September) (noted F2); 
saturated soil (called saturated); and two intermediate classes which 
express transient states (between classes F0 and F1, noted F0/F1 and 
between classes F1 and F2, noted F1/F2). 

Among the 34 observed fields, twenty-three fields belong to a sub- 
catchment highly observed (network of five hydrometric stations 
equipped with flumes) because of its high runoff process and erosion, 
which is located in the Western side of the Kamech catchment (red 
polygons, Fig. 1c). Seven fields belong to the Eastern side of the Kamech 
catchment (blue polygons, Fig. 1c). The remaining four fields are located 
on the top North of the Kamech catchment (green polygons, Fig. 1c). 
These 34 observed fields were characterized by a large diversity of 
shapes (Fig. 1c) and a low diversity of sizes (from 0.07 to 1.27 ha, with a 
mean of 0.51 ha, Table 1). The SSCs were described by the same operator 
along the crop season. 

2.3. Remote sensing data 

The ESA’s Sentinel-2A satellite was launched on the 23th of June 
2015. The satellite orbits at an altitude of 786 km and has a swath width 
of 290 km. In 2016, it acquired multispectral data with a revisit of 10 
days in 13 bands covering the visible, NIR and SWIR spectral domain 
with spatial resolutions ranging from 10 to 60 m. The three bands ac
quired at 60 m spatial resolution (coastal at 443 nm, water vapour at 
945 nm and cirrus at 1380 nm) were only used to perform atmospheric 
corrections and cloud detection. For each date, the Level 2A Sentinel-2 
data were corrected from atmospheric effects using the MACCS (Multi- 
sensor Atmospheric Correction and Cloud Screening) algorithm (Hagolle 
et al., 2015; Baetens et al., 2019), taking into account adjacency effects 
and illumination variations due to topography. MACCS was specifically 
designed to process time series of optical images at high resolution, 
acquired under quasi constant viewing angles. Output data from MAACS 
algorithm were orthoimage Bottom-of-Atmosphere corrected reflec
tance images and were obtained from the French space agency website 
(CNES, theia.cnes.fr). The six spectral bands initially acquired with 20 m 
spatial resolution were resampled to 10 m. We used the function 
“disaggregate” provided in the raster package (Robert, 2019) in R 
version 3.2.1 (R Development Core Team, 2015). So the values in the 
resampled bands are the same as in the larger original cells. Finally, the 
natural vegetation, olive and fruit tree plantations, lakes, urban areas 
and roads were masked over each Sentinel-2 data using the land use map 
(Section 2.2.1) to keep only the 384 fields dedicated to annual crops. 
After this mask process, the 384 fields which have to be classified 
represent 199 698 Sentinel-2 pixels over each Sentinel-2 image. A total 
of 1264 pixels are associated to observed SSCs, based on the survey over 
the 34 cultivated plots of the Kamech catchment. As the 34 observed 

fields were characterized by a mean, minimum and maximal size of 0.51 
ha, 0.07 ha and 1.27 ha (Table 1), respectively, from around 5 to 120 
pixels were considered per field. So depending on the field size, the SSC 
observations done at each date of field observation (Table 2) were 
representative of 5 to 120 pixels. 

The dates of Sentinel-2 images (Table 2) were chosen to fit the period 
of agricultural practices realized after the harvest (July) and the summer 
season and until crop growth (December). From beginning of August to 
end of December 2016, fifteen Sentinel-2 were acquired over our study 
area. Among these fifteen acquisitions, five images had less than 10% 
cloud over the Kamech catchment and were kept. 

The Sentinel-2 image acquired on the 4th of August 2016 was 
considered adequate to align the field observations acquired on the 1st of 
September 2016 (Table 2) because neither agricultural practices nor 
rainfall happened in August. Additionally, the Sentinel-2 image acquired 
on the 3rd of October 2016 was considered adequate to align with the 
field observations acquired on the 28th of September 2016 (Table 2). The 
other Sentinel-2 images were acquired with a maximum delay of 1 day 
relative to the field observations (Table 2). 

3. Methods 

This work explored two approaches to classify the targeted SSCs. 
Differently from discrimination that attempts to separate distinct sets of 
objects, classification attempts to allocate new objects to predefined 
groups (labels). A classification model (machine learning approach) is 
firstly calibrated on a training set that involves examples already 
labelled with class information and, successively it is deployed to 
perform classification of new unlabelled data. To summarize, the main 
objective of a classification task is to categorize unlabelled data in a 
predefined set of known classes. This paper explored two approaches to 
classify the classes of targeted SSCs:  

i) In the “single-date” approach, a Random Forest Classifier (RFC) 
model is trained to classify one SSCj, based on pixels extracted from 
one Sentinel-2 image acquired at ti (Fig. 2A, steps 1 and 2). Once 
trained, the RFC model was then applied to this Sentinel-2 image 
acquired at ti (Fig. 2A, step 6). Following this “single-date” approach, 
a RFC model was built for classifying each SSCj and trained from each 
Sentinel-2 image. As three SSCs have to be classified at the five 
Sentinel-2 dates, fifteen RFC models were trained in the “single-date” 
approach. These RFC models would be noted RF_sdi,SSCj where i is the 
Sentinel-2 date (Table 2) and SSCj is the SSC predicted by the model.  

ii) In the “multi-date” approach, a RFC model is trained to classify one 
SSCj, based on pixels extracted from the five Sentinel-2 images 
(Fig. 2B, steps 1 and 2). Once trained, the RFC model was then 
applied to the five Sentinel-2 images (Fig. 2B, step 6). Following this 
“multi -date” approach, a RFC model was built for classifying each 
SSCj and trained from the five Sentinel-2 images. As three SSCs have 
to be classified, three RFC models were trained in the “multi-date” 
approach. These RFC models would be noted RF_mdSSCj where SSCj is 
the SSC predicted by the model. In this approach, the five images 
were used to train the models without considering the chronological 
order of images. 

The aim of using the “multi-date” approach compared to the “single- 
date” approach is to increase the training data, in term of both number of 
predictors and number of labelled pixels, compared to the “single-date” 
approach. 

The classification models were developed in R version 3.2.1 (R 
Development Core Team, 2015) using the caret package (Kuhn et al., 
2016). 

3.1. Random forest 

The random forest (RF) takes part of the ensemble machine learning 
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Fig. 2. Workflow of the SSC classification using the A) “single-date” and B) “multi-date” approach, where Rti,h,k is the reflectance value acquired over the pixel h (h 
varying from 1 to 1264) at the spectral band k (k varying from 1 to 10) for the Sentinel-2 image acquired at ti (i varying from 1 to 5). 
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techniques. The random forest was developed by Breiman (2001) and 
demonstrated as the best classifier among 179 classifiers arising from 17 
families tested by Fernández-Delgado et al. (2014). Its effectiveness in 
remote sensing has been demonstrated due to its robustness (e.g., Ok 
et al., 2012). The RF produces a large number of classification trees that 
contribute via a voting system to classify data (Kuhn et al., 2016). As 
part of the ensemble machine learning techniques, RF has higher ac
curacy than single classifiers as a group of classifiers performs more 
accurately than any single classifier (Ok et al., 2012) and RF is consid
ered as efficient and effective even with non-normally distributed 
training data set (Rodriguez-Galiano et al., 2012) which is the case of 
our datasets. Belgiu and Drăgu (2016) proposed a review of the limita
tions and advantages of the algorithm. 

Two parameters need to be tuned: the number of trees (ntree 
parameter), which are created by randomly selecting samples from the 
calibration samples, and the number of variables used to split each tree 
node (mtry parameter). As reported by Belgiu and Drăgu (2016), most 
studies are performed using an ntree value of 500 because the errors are 
stable before this number of classification trees is achieved. So we 
selected an ntree value of 500 to fit with the outputs of Belgiu and Drăgu 
(2016). Belgiu and Drăgu (2016) also reported that the mtry parameter 
is usually set to the square root of the number of input variables. So we 
tested 8 values of mtry ranging between 2 and 10, and the optimal value 
was defined for the best overall accuracy obtained when performing a 
10-fold cross-validation on the calibration dataset. 

3.2. Calibration and Validation dataset 

In the “single-date” approach, the full dataset is composed of the 
1264 pixels extracted from one Sentinel-2 image acquired at ti (Fig. 2A, 
step 2). The RF_sdi,SSCj models were trained on a subset of 70% of this full 
dataset (i.e. 884 pixels), while the remaining 30% (i.e. 380 pixels) was 
used to test the performance of the model (Fig. 2A, steps 3 and 5). The 
split between training and test datasets was done following a stratified 
random sampling. Thanks to this stratified random sampling, the cali
bration and test datasets are characterized by a similar distribution of 
the targeted SSCj. 

In the “multi-date” approach, the full dataset is composed of 6320 
pixels extracted from the five Sentinel-2 images (1264 pixels extracted 
per Sentinel-2 image) (Fig. 2B, step 2). The RF_mdSSCj model were 
trained on a subset of 70% of this full dataset (i.e. 4420 pixels), while the 
remaining 30% (i.e. 1900 pixels) was used to test the performance of the 
models (Fig. 2B, steps 2 and 3). The split between training and test 
datasets was done following a stratified random sampling, providing a 
similar distribution of the targeted SSCj in the calibration and test 
datasets. 

3.3. Accuracy assessment 

The overall accuracy and kappa coefficients, calculated on test data, 
were used to measure the performance of the RF classifications (Cohen, 
1960). Overall accuracy is commonly measured as the percentage of 
pixels correctly classified in the validation dataset. The kappa coefficient 
compares the observed accuracy with the expected accuracy resulting 
from randomness. The kappa statistics are used to assess the proportion 
of the results that is due to pure randomness, especially when classes 
with few individuals occur in the classification process. A kappa coef
ficient of 1 indicates perfect classification, and a kappa coefficient of 
0 corresponds to a random classification (Congalton, 1991). Based on 
Congalton and Green (1999), kappa values > 0.80 represent strong 
agreement between the classification results and ground truth data, 
kappa values between 0.4 and 0.8 represent moderate agreement, and 
kappa values below 0.4 represent poor agreement. The 95% confidence 
intervals (95% CI) of the overall accuracy were also calculated. 

Accuracies of individual class were calculated in a similar way than 
overall accuracy. The producer’s accuracy was used to indicate the 

probability of a reference pixel being correctly classified (Story and 
Congalton, 1986). The producer’s accuracy for class A was calculated as 
the ratio between the number of pixels correctly classified in class A and 
the total number of reference pixels (ground true) for that class A. And 
user’s accuracy was used to indicate the probability that a pixel classi
fied on the map represents the class on the field (Story and Congalton, 
1986). The user’s accuracy for class A was calculated as the ratio be
tween the number of pixels correctly classified in class A and the total 
number of pixels classified in class A. 

The overall, producer’s and user’s accuracies, 95% CI and Kappa- 
coefficient were calculated with Caret R package (Breiman, 2001) by 
using confusionMatrix function. 

3.4. Classification mapping 

In the “single-date” approach, after validating a RF_sdi,SSCj model on 
the corresponding test dataset for predicting the SSCj (Fig. 2A, step 5), 
the RF_sdi,SSCj model was applied to the entire Sentinel-2 image acquired 
at date ti (Fig. 2A, step 6) providing one classification map of the tar
geted SSCj for the date ti. 

In the “multi-date” approach, after validating a RF_mdSSCj model on 
the test dataset for predicting the SSCj (Fig. 2B, step 5), the RF_mdSSCj 
model was applied to the five Sentinel-2 images (Fig. 2B, step 6) 
providing five classification maps of the targeted SSCj (each classifica
tion map corresponding to one date of Sentinel-2 acquisition). 

3.5. Classes aggregation from pixel to field scale 

For each classification map, the classes affected to pixels were sec
ondly aggregated at the field scale using field boundaries (Fig. 1c). The 
class labelling process for a field intersecting a collection of pixels was 
fixed as the most frequent pixel class. 

As it is expected to get similar class of each SSC at field scale, and as a 
highest frequent class of pixels within a field may just result from pure 
randomness, an indicator of the non-randomness of the most frequent 
pixel class was computed at field scale. The selected indicator for a given 
field j was the probability value (P-value) resulting from a chi-squared 
test, where P-valuej denotes the probability of the chi2 variable under 
pure random process (H0) with dl degree of freedom for the given field j. 
The chi2 variable with one degree of freedom for any field j composed of 
n pixels is computed as follows: 

Chi2j =

(
F̂ j

2
− F

)2

F2 (1)  

where F̂ j is the frequency of the most frequent class for field j and F is the 
theoretical one resulting from a binomial random law, knowing the 
overall proportion of this class against others at the entire image scale. 
For a given field j, the P-valuej lower than 0.05 indicates that the 
observed higher frequency in a field is significant and does not result 
from randomness. 

4. Results 

4.1. Preliminary analysis of observed SSCs 

The distribution of the observed classes did not follow a normal 
distribution, regardless of the date and the SSC (Fig. 3). The green 
vegetation fraction mainly varied because of the tillage and secondarily 
the meteorological conditions that drove vegetation growth. Only one 
class was observed in August (0%, Fig. 3a) as crops were harvested 
between June and July, and the dry and hot weather during this period 
prevented any grass growth. From September, the number of observed 
green vegetation fraction classes increased over time to reach 6 classes 
in December (Fig. 3a) after seeding and crop emergence. During the 
selected period, only four classes were represented for the dry 
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Fig. 3. Distribution of the a) green vegetation, b) dry vegetation, and c) physical soil surface structure classes observed in the field over 34 agricultural plots on five 
dates (Y-M− D). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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vegetation fractions: 5% < vegetation fraction ≤ 25%, 25% < vegetation 
fraction ≤ 50%, 50% < vegetation fraction ≤ 75% and 75% < vegeta
tion fraction ≤ 100% (Fig. 3b). The dry vegetation fraction varies due to 
vegetation decomposition and the management practices, such as 
tillage. The four classes of dry vegetation were never observed on the 
same date (Fig. 3b). From August to December, the number of dry 
vegetation fraction classes decreased over time to reach only one class in 
December (0%, Fig. 3b) after tillage, seedling and crop emergence. The 
physical soil surface structure varied mainly due to rainfall and 
secondarily as a result of management practices. The six classes of the 
physical soil surface structure were never observed on the same date 
(Fig. 3c). Most of the fields were characterized by a transient state of F1/ 
F2 whatever the date. And numerous saturated fields were observed in 
21th of November and 2sd of December. 

Green and dry vegetation fraction were inversely correlated as in 
August, the absence of green vegetation is associated to a high propor
tion of dry vegetation (Fig. 3a and b), and then more the green vege
tation fraction increases, more the dry vegetation fraction decreases. 
Whereas the soil surface structure was not correlated to the vegetation 
fraction. 

4.2. Classification models performances 

Among the fifteen RF_sdi,SSCj models initially planned to be built, the 
RF_sd1,green and RF_sd5,dry models have not enough classes to be trained 
(only one class was observed, Fig. 3a and 3b) so these two models were 
not built. The remaining thirteen RF_sdi,SSCj models were trained from 
their dedicated training dataset and tested on their dedicated test 
datasets (Fig. 2A, steps 2, 3 and 4). Nevertheless, when the training and 
test datasets are very unbalanced, the models performances must be 
considered carefully, as for RF_sd2,dry, RF_sd3,dry, RF_sd4,dry and RF_sd3,struc 
(Fig. 3b and c; in grey and italics in Table 3). Considering the almost- 
balanced training and test datasets, only nine RF_sdi,SSCj models can be 
explored. The RF_sd2,green and RF_sd1,struct provided the highest perfor
mances with an overall accuracy and kappa of 0.93 and 0.82, respec
tively, whereas the RF_sd3,green provided the lowest overall accuracy and 
kappa of 0.84 and 0.76, respectively (Table 3). These RF_sdi,SSCj models 
provided high user’s accuracies, such as the RF_sd3,green model ranging 
from 77.0% to 86.2% (Table 4). The RF_sdi,SSCj models provided also 

high producer’s accuracy, such as the RF_sd3,green model ranging from 
67.6% to 85.7% (Table 4). 

The three RF_mdSSCj models were trained from training datasets and 
tested on their dedicated test datasets (Fig. 2B, steps 2, 3 and 4). The 
classification performances obtained from RF_mdgreen and RF_mddry on 
test datasets extracted from S2 images acquired on 4th of August and 2sd 

of December, respectively, have to be considered carefully as only one 
class was represented on these test datasets (0% and 5–25%, respec
tively, Fig. 3a and b). These three RF_mdSSCj models provided high user’s 
accuracies, such as the RF_mdgreen model ranging from 74.2% to 92.6% 
(Table 4). The RF_mdgreen models provided also high producer’s accu
racy, such as the RF_mdgreen model ranging from 78% to 84.5% (Table 4). 

Finally, the performances of the RF_sdi,green models were slightly su
perior to those of the RF_mdgreen model (Table 3). As well the perfor
mances of the RF_sdi,struc models were slightly superior to those of the 
RF_mdstruc model (Table 3). Additionally, no difference in the perfor
mance behaviour of the RF_sdi,dry models and the RF_mddry model were 
underlined for the classification of the dry vegetation fraction (Table 3). 

4.3. Classification maps 

Once the RF models were calibrated following both approaches, they 
were applied to their corresponding Sentinel-2 images. The resulting 
classifications were aggregated at the field scale using the field bound
aries map (Fig. 1c), and the majority class was maintained to label the 
field. 

Table 3 
Overall accuracy, 95% confidence intervals and kappa calculated from the test datasets for each model (RF_sdi,SSC and RF_mdSSC). When no RF_sdi,SSCj has been built 
because of insufficient number of class (i.e., RF_sd1,green and RF_sd5,dry), the cells were empty. The values calculated from test datasets composed by two unbalanced 
observed classes are indicated in italics. The performances of RF_mdSSC models calculated from test datasets composed by only one observed class are indicated in italics 
and underlined.  

Date of Sentinel 2 image acquisition 
(Y-M-D) 

2016–08-04 2016–10-03 2016–11-02 2016–11-22 2016–12-02 

Date Number i 1 2 3 4 5 

RF_sdi,green Overall accuracy  0.93 0.84 0.85 0.88 
95% CI  [0.9–0.94] [0.82–0.87] [0.82–0.88] [0.84–0.91] 
Kappa  0.82 0.76 0.79 0.84 

RF_sdi,dry Overall accuracy 0.89 0.89 0.99 0.98  
95% CI [0.87–0.92] [0.87–0.92] [0.99 – 1] [0.97 – 1]  
Kappa 0.8 0.7 0.93 0.9  

RF_sdi,struc Overall accuracy 0.93 0.88 0.95 0.92 0.89 
95% CI [0.91 – 0.95] [0.85 – 0.9] [0.92–0.97] [0.89 – 0.95] [0.85 – 0.91] 
Kappa 0.82 0.78 0.83 0.8 0.76 

RF_mdgreen Overall accuracy 1 0.91 0.79 0.8 0.81 
95% CI [0.98 – 1] [0.88 – 0.93] [0.75 – 0.83] [0.76 – 0.84] [0.77 – 0.85] 
Kappa 0 0.77 0.69 0.73 0.74 

RF_mddry Overall accuracy 0.88 0.9 0.94 0.99 1 
95% CI [0.84 – 0.91] [0.87 – 0.93] [0.91 – 0.95] [0.97 – 0.99] [0.99 – 1] 
Kappa 0.78 0.76 0.69 0.95 0 

RF_mdstruc Overall accuracy 0.93 0.85 0.91 0.91 0.86 
95% CI [0.89 – 0.94] [0.8 – 0.87] [0.87 – 0.93] [0.87 – 0.93] [0.82 – 0.89] 
Kappa 0.82 0.7 0.74 0.79 0.68  

Table 4 
User’s and producer’s accuracy obtained on test datasets using the RF_sd3,green 
model (i.e., built from the Sentinel-2 image acquired on the 2nd of November 
2016) and the RF_mdgreen model.    

Classes on the 2nd of November 2016 
(i = 3)   

0% 0 – 5 % 5 – 25 % 

RF_sd3,green user’s accuracy (%)  86.2  77.0 80.7 
producer’s accuracy (%)  67.6  85.7 83.4 

RF_mdgreen user’s accuracy (%)  74.2  78.4 92.6 
producer’s accuracy (%)  80.2  84.5 78  
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Only the classes used in the training database can be predicted by the 
RF_sdi,SSCj models (Fig. 2A). For instance, because only three classes of 
the green vegetation fraction were observed throughout the 34 fields on 
the 3rd of November 2016 (Fig. 3a), the classification map of the green 
vegetation fraction over Kamech using the RF_sd3,green model contains 
only three classes (Fig. 4A1). As well, as only two classes of dry vege
tation fraction were observed over the 34 fields on the 3rd of November 
2016 (Fig. 3b), the classification map of the dry vegetation fraction over 
Kamech using the RF_sd3,dry model contains only these two classes 
(Fig. 4B1). 

With the use of the “multi-date“ approach, which calibrates a unique 
classification model per SSC from the five Sentinel-2 images and field 
observations (Fig. 2b), all the classes can be predicted. Hence, whereas 
only three classes of green vegetation fraction were observed over the 34 

fields on the 3rd of November 2016 (Fig. 3a), the classification map 
obtained from the RF_mdgreen model shows five classes (Fig. 4A2). As 
well, whereas only two classes of dry vegetation fraction were observed 
throughout the 34 fields on the 3rd of November 2016 (Fig. 3b), the 
classification map obtained from the RF_mddry model contained three 
classes (Fig. 4B2). Moreover, whereas all classes could be predicted as 
they were represented in the calibration dataset, the classification maps 
for each date that were obtained using the “multi-date” approach do not 
contain all the classes (Fig. 4A2, B2 and C2). 

4.4. Significance of classifications 

The frequency of the majority class within a field may reflect the 
variability of the classifications at the field scale and thus may give 

Fig. 4. Majority class at the field scale, obtained with the Sentinel-2 image acquired on the 2nd of November 2016 using A1) the RF_sd3,green model, A2) the RF_mdgreen 
model, B1) the RF_sd3,dry model and B2) the RF_mddry model C1) the RF_sd3,struc model and C2) the RF_mdstruc model. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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information on the classifications uncertainty at this scale given that the 
fields are expected to show limited internal variability. 

The significance of the majority class was studied based on the chi- 
squared test, which determined whether there was a significant differ
ence between the i) expected frequency of the class due to the random 
and ii) observed frequency of the majority class in each field. The P- 
valuej was calculated for each field j, at each date and for each SSC 
(Figs. 5 and 6). The field j associated to P-valuej lower than 0.05 indicates 
that the observed higher frequency in this field j is significant and does 
not result from randomness. 

A majority of fields are associated to a low variability of classifica
tions (P-value < 0.05) (example in Fig. 5a and b, Fig. 6). The median of 
the P-values was near 0, and the third quartile was lower than 0.2 
regardless of the SSC, date and approach (Fig. 6). The p-values obtained 
for green vegetation were higher than the p-values obtained for other 
SSCs, except on the 4th of August 2016 and 3rd of October 2016 with the 
“multi-date” approach (Fig. 6b). Finally, regardless of the SSC, approach 
or date, no spatial pattern appeared in the p-value mapping (Fig. 5a and 
b), as fields associated to high variability of classifications (P-value >
0.05) are not the same from one approach to the other (example in 
Fig. 5a and b). 

4.5. Classification comparisons between both approaches 

The maps obtained by both approaches for the same SSCj and date ti 
may present some classification differences. These classification differ
ences between the both approaches for the same SSC and date were 
calculated at the field scale as the percentage of fields classified differ
ently from one approach to the other one for each SSCj and each date ti 
(Table 5). The most important difference in classification between both 
approaches was obtained for the green vegetation fraction classification 
on the 22nd of November (Table 5). A less important difference in the 
classifications between both approaches was obtained for the dry 
vegetation fraction classification, still on the 22nd of November 
(Table 5). 

Large differences in classification between both approaches and for 
the three SSCs were observed on the 3rd of October. This could be 
explained by the interval of 5 days between the field observation date 
(28th of September 2016) and Sentinel-2 acquisition date (3rd of October 
2016). Some agricultural practices may have happened during these 5 
days and changed the SSCs, which may have caused flawed associations 
between the image and the ground information, which may have caused 
misclassification. Moreover, as this image was slightly cloudy (less than 

5% and outside of our study area), these misclassifications may also 
have been related to flawed atmospheric corrections. 

Finally, no correlation was observed between the number of 
observed classes on field at ti and the percent difference of the classifi
cation between both approaches (Table 5). 

5. Discussion 

5.1. Models performances analysis 

From the overall accuracy and kappa values, our results showed that 
both the RF_sdi,SSCj and RF_mdSSCj models provided correct classifications 
for the three SSCs (Table 3). The good performances obtained for dry 
vegetation fraction classification are in agreement with the ones ob
tained with LANDSAT data by Van Deventer et al. (1997) and the ones 
obtained with ASTER data by Serbin et al. (2009). The good perfor
mances obtained for green vegetation fraction classification are in 
agreement with the ones obtained with Sentinel-2 data by Wang et al. 
(2018) and the ones obtained with LANDSAT data by Jia et al. (2017). 

Nevertheless, as our validation and calibration sets were not 
completely independent, our overall accuracy and kappa values may 
have been over-estimated as the pixels in the validation dataset 
belonged to the same fields as the pixels in the calibration dataset. To be 
absolutely independent, the validation dataset should be composed of 
pixels from other fields than those used to calibrate the classification 
model. However, this perfect independence can be ensured only when 
the number of observed fields is large enough to be divided into cali
bration and validation fields, which is rarely the case as field observa
tions are time consuming and costly, especially in case of time series. 

5.2. Advantages and limitations of both approaches 

The “single-date” approach consists in training a RFC model RF_sdi, 

SSCj from a calibration database extracted from one Sentinel-2 image ti, 
to be applied to a test database extracted from the same image ti and then 
to be applied to the entire image ti (Fig. 2A). The “multi-date” approach 
consists in training a RFC model RF_mdSSCj from a calibration database 
extracted from our five Sentinel-2 images, to be applied to a test data
base extracted from the five Sentinel-2 images and then to be applied to 
each image (Fig. 2B). 

Compared with the “single-date” approach, the use of five Sentinel-2 
images in the “multi-date” approach for classifying SSCs allowed to in
crease the calibration dataset in term of both number of calibration 

Fig. 5. P-values of the chi-squared test obtained from the Sentinel-2 image acquired on the 2nd of November 2016 using the a) RF_sd3,green and b) RF_mdgreen model. In 
clear purple: P-values less than 0.005 referring to a significant frequency. In dark purple: P-values > 0.005 referring to frequency close to randomness. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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samples and number of observed classes. So the “multi-date” approach 
allowed predicting a class A of an SSC at a date i, even if this class A was 
not observed by the operator on this date i. 

However, the use of these five Sentinel-2 images in RF_mdSSCj models 

provided slightly lower performances compared with the RF_sdi,SSCj 
models (Table 3). As the calibration datasets used in RF_mdSSCj models 
were based on five Sentinel-2 images (Fig. 2B), the calibration datasets 
may contain some slight reflectance heterogeneity due to differences in 

Fig. 6. P-values of the chi-squared test for green vegetation fraction (green), dry vegetation fraction (orange) and physical soil surface structure (blue), obtained by a) 
the “single-date” approach and b) the “multi-date” approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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acquisition dates of Sentinel-2 images and so in atmosphere conditions 
and corrections which may impact the RF_mdSSCj models. Slight reflec
tance differences have been observed between Sentinel-2 spectra ac
quired on same targets but corrected by different atmospheric methods 
(Martins et al., 2017; Sola et al., 2018). As well, it can be guess that slight 
reflectance differences may be observed between Sentinel-2 spectra 
acquired on same targets, corrected by same atmospheric method, but 
acquired on different dates. 

Finally, whereas most publications have studied dynamic multi
spectral signals for one final classification (such as Lenney et al. (1996) 
or Bagan et al. (2005), who used multi-temporal NDVI from LANDSAT 
and MODIS data, respectively, for land cover classification), whatever 
our approach applied on the time series of Sentinel-2 images, both the 
spatial and temporal information of the SSCs were obtained. 

5.3. Other approach for future 

Another approach in future experiments may use some Sentinel-2 
images for calibration and an independent Sentinel-2 image for 
testing, all images acquired over the same study area. This approach 
would allow the temporal extension of SSCs classifications to other 
dates. Nevertheless, the potential of this approach might be affected due 
to soil characteristics differences (e.g., differences of soil humidity) or 
atmospheric effects differences between calibration and test images. 
This approach would require i) a calibration from Sentinel-2 dataset 
images associated with field observations that include all classes of the 
SSCs and ii) focusing on how to manage such surface directional effects 
radiometric and seasonal shifts in the classification process. From our 
knowledge, this approach was never tested, whatever the target (SSCs, 
land use, etc.). 

5.4. Classification uncertainties 

Calibration of the classification models required the collection of 
ground truth data and remote sensing images to be as close together as 
possible, as the SSCs are highly variable both in space and time, 
depending from punctual anthropic actions. Without this close acqui
sition, there is uncertainty in the match between ground truth data and 
spectral information, which may negatively impact the classification 
results. Indeed, when field-observed data are collected before remote 
sensing images, some agricultural practices (e.g., ploughing, weeding 
and seeding) that occur between the data collections may change the 
reflectance signal, causing the field-observed data to not correspond 
with the recorded signal. In addition, when remote sensing images are 
collected before field-observed data, some agricultural practices that 
occur between the data collections may be recorded in the field obser
vations but not in reflectance signals. A good field expertise is necessary, 
as it may help to estimate an acceptable interval between field 

observations and remote sensing data acquisition. 
In our case, the uncertainties in the classification obtained on the 4th 

of August were estimated as null, as no agricultural practices happened 
between the Sentinel-2 acquisition on the 4th of August and the field 
observations on the 1st of September. Inversely, the uncertainties in the 
classification obtained on the 3rd of October may be present, as agri
cultural practices may have occurred between the Sentinel-2 acquisition 
on the 3rd of October and the field observations on the 28th of 
September. 

As the SSCs presented strong spatial and temporal variability, each 
class of SSCs was not represented in the same manner at each observa
tion date (Fig. 3). This unbalanced distribution of classes may have 
produced high uncertainties in the classification results. For example, 
only two classes of dry vegetation were observed on the 3rd of 
November, and among both classes, the class 5–25% was over
represented. Therefore, the classifications obtained by the “single-date” 
approach with this highly unbalanced distribution of classes must be 
exploited very carefully. 

6. Conclusions 

The spatiotemporal monitoring of SSCs is still one of the major 
challenges for soil infiltration processes modelling, as it is a costly and 
time-consuming procedure. The successful recent deployment of the 
Sentinel-2 satellites created a unique opportunity to address the need for 
the characterization of the earth surface elements both in space and 
time, including the soil surface characteristics. This study suggested that 
the proposed approaches applied on a time series of Sentinel-2 images 
provided spatiotemporal information on three SSCs linked to soil infil
tration processes: the green vegetation fraction, dry vegetation fraction 
and physical soil surface structure. Futures works may focus on 
combining these SSC maps obtained at each date by the time series 
remote sensing data, to produce maps of infiltrability classes using 
pedotransfer functions or typology of the hydrological SSC classes as 
suggested by Andrieux et al. (2001). Another future study could test a 
direct mapping of the infiltration classes, following Corbane et al. 
(2008), who demonstrated that several hydrological SSC classes could 
be distinguished on the basis of spectral and spatial information 
collected with aerial RGB photographs over Mediterranean vineyard 
areas. Finally, although the multispectral remote sensing data acquisi
tion is still increasing and although the data are free and shared thanks 
to the ESA Copernicus programme, one remaining issue may arise from 
the limitations in the field data, still necessary for calibrating the clas
sification models. Thus, concurrently with this remote sensing data 
acquisition and sharing, a special effort could be made on field data 
acquisition and sharing. 

Table 5 
Percentage of classification differences, calculated at the field scale, between maps obtained from RF_sdi,green and RF_mdgreen, from RF_sdi,dry and RF_mddry and from 
RF_sdi,struc and RF_mdstruc. When no RF_sdi,SSCj has been built because of insufficient number of class (i.e., RF_sd1,green and RF_sd5,dry), the comparison was impossible so 
the cell was darken.  

Date of images acquisition tim_i (Y-M− D) 2016–08- 
04 

2016–10- 
03 

2016–11- 
02 

2016–11- 
22 

2016–12- 
02 

Date Number i 1 2 3 4 5 

Green vegetation fraction Number of observed classes 1 2 3 5 6 
% of mapping differences obtained between RF_sdi,green and 
RF_mdgreen  

19.5 41.9 42.7 11.7 

Dry vegetation fraction Number of observed classes 3 3 2 2 1 
% of mapping differences obtained between RF_sdi,dry and 
RF_mddry 

18.0 32.0 9.4 0.3  

Physical soil surface 
structure 

Number of observed classes 2 4 4 3 5 
% of mapping differences obtained between RF_sdi,struc and 
RF_mdstruc 

13.3 39.3 18.5 3.6 2.1  
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Belgiu, M., Drăgu, L., 2016. Random forest in remote sensing: a review of applications 
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. https://doi. 
org/10.1016/j.isprsjprs.2016.01.011. 

Belgiu, M., Csillik, O., 2018. Sentinel-2 cropland mapping using pixel-based and 
objectbased time-weighted dynamic time warping analysis. Remote Sens. Environ. 
204, 509–523. https://doi.org/10.1016/j.rse.2017.10.005. 
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